Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/drivers/char/ipmi/ipmi_si_intf.c

  1 /*
  2  * ipmi_si.c
  3  *
  4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
  5  * BT).
  6  *
  7  * Author: MontaVista Software, Inc.
  8  *         Corey Minyard <minyard@mvista.com>
  9  *         source@mvista.com
 10  *
 11  * Copyright 2002 MontaVista Software Inc.
 12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
 13  *
 14  *  This program is free software; you can redistribute it and/or modify it
 15  *  under the terms of the GNU General Public License as published by the
 16  *  Free Software Foundation; either version 2 of the License, or (at your
 17  *  option) any later version.
 18  *
 19  *
 20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 30  *
 31  *  You should have received a copy of the GNU General Public License along
 32  *  with this program; if not, write to the Free Software Foundation, Inc.,
 33  *  675 Mass Ave, Cambridge, MA 02139, USA.
 34  */
 35 
 36 /*
 37  * This file holds the "policy" for the interface to the SMI state
 38  * machine.  It does the configuration, handles timers and interrupts,
 39  * and drives the real SMI state machine.
 40  */
 41 
 42 #include <linux/module.h>
 43 #include <linux/moduleparam.h>
 44 #include <linux/sched.h>
 45 #include <linux/seq_file.h>
 46 #include <linux/timer.h>
 47 #include <linux/errno.h>
 48 #include <linux/spinlock.h>
 49 #include <linux/slab.h>
 50 #include <linux/delay.h>
 51 #include <linux/list.h>
 52 #include <linux/pci.h>
 53 #include <linux/ioport.h>
 54 #include <linux/notifier.h>
 55 #include <linux/mutex.h>
 56 #include <linux/kthread.h>
 57 #include <asm/irq.h>
 58 #include <linux/interrupt.h>
 59 #include <linux/rcupdate.h>
 60 #include <linux/ipmi.h>
 61 #include <linux/ipmi_smi.h>
 62 #include <asm/io.h>
 63 #include "ipmi_si_sm.h"
 64 #include <linux/dmi.h>
 65 #include <linux/string.h>
 66 #include <linux/ctype.h>
 67 #include <linux/pnp.h>
 68 #include <linux/of_device.h>
 69 #include <linux/of_platform.h>
 70 #include <linux/of_address.h>
 71 #include <linux/of_irq.h>
 72 
 73 #ifdef CONFIG_PARISC
 74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
 75 #include <asm/parisc-device.h>
 76 #endif
 77 
 78 #define PFX "ipmi_si: "
 79 
 80 /* Measure times between events in the driver. */
 81 #undef DEBUG_TIMING
 82 
 83 /* Call every 10 ms. */
 84 #define SI_TIMEOUT_TIME_USEC    10000
 85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
 86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
 87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
 88                                       short timeout */
 89 
 90 enum si_intf_state {
 91         SI_NORMAL,
 92         SI_GETTING_FLAGS,
 93         SI_GETTING_EVENTS,
 94         SI_CLEARING_FLAGS,
 95         SI_GETTING_MESSAGES,
 96         SI_CHECKING_ENABLES,
 97         SI_SETTING_ENABLES
 98         /* FIXME - add watchdog stuff. */
 99 };
100 
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105 
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110 
111 #define DEVICE_NAME "ipmi_si"
112 
113 static struct platform_driver ipmi_driver;
114 
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119         /*
120          * Number of times the driver requested a timer while an operation
121          * was in progress.
122          */
123         SI_STAT_short_timeouts = 0,
124 
125         /*
126          * Number of times the driver requested a timer while nothing was in
127          * progress.
128          */
129         SI_STAT_long_timeouts,
130 
131         /* Number of times the interface was idle while being polled. */
132         SI_STAT_idles,
133 
134         /* Number of interrupts the driver handled. */
135         SI_STAT_interrupts,
136 
137         /* Number of time the driver got an ATTN from the hardware. */
138         SI_STAT_attentions,
139 
140         /* Number of times the driver requested flags from the hardware. */
141         SI_STAT_flag_fetches,
142 
143         /* Number of times the hardware didn't follow the state machine. */
144         SI_STAT_hosed_count,
145 
146         /* Number of completed messages. */
147         SI_STAT_complete_transactions,
148 
149         /* Number of IPMI events received from the hardware. */
150         SI_STAT_events,
151 
152         /* Number of watchdog pretimeouts. */
153         SI_STAT_watchdog_pretimeouts,
154 
155         /* Number of asynchronous messages received. */
156         SI_STAT_incoming_messages,
157 
158 
159         /* This *must* remain last, add new values above this. */
160         SI_NUM_STATS
161 };
162 
163 struct smi_info {
164         int                    intf_num;
165         ipmi_smi_t             intf;
166         struct si_sm_data      *si_sm;
167         struct si_sm_handlers  *handlers;
168         enum si_type           si_type;
169         spinlock_t             si_lock;
170         struct ipmi_smi_msg    *waiting_msg;
171         struct ipmi_smi_msg    *curr_msg;
172         enum si_intf_state     si_state;
173 
174         /*
175          * Used to handle the various types of I/O that can occur with
176          * IPMI
177          */
178         struct si_sm_io io;
179         int (*io_setup)(struct smi_info *info);
180         void (*io_cleanup)(struct smi_info *info);
181         int (*irq_setup)(struct smi_info *info);
182         void (*irq_cleanup)(struct smi_info *info);
183         unsigned int io_size;
184         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185         void (*addr_source_cleanup)(struct smi_info *info);
186         void *addr_source_data;
187 
188         /*
189          * Per-OEM handler, called from handle_flags().  Returns 1
190          * when handle_flags() needs to be re-run or 0 indicating it
191          * set si_state itself.
192          */
193         int (*oem_data_avail_handler)(struct smi_info *smi_info);
194 
195         /*
196          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197          * is set to hold the flags until we are done handling everything
198          * from the flags.
199          */
200 #define RECEIVE_MSG_AVAIL       0x01
201 #define EVENT_MSG_BUFFER_FULL   0x02
202 #define WDT_PRE_TIMEOUT_INT     0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207                              OEM1_DATA_AVAIL | \
208                              OEM2_DATA_AVAIL)
209         unsigned char       msg_flags;
210 
211         /* Does the BMC have an event buffer? */
212         bool                has_event_buffer;
213 
214         /*
215          * If set to true, this will request events the next time the
216          * state machine is idle.
217          */
218         atomic_t            req_events;
219 
220         /*
221          * If true, run the state machine to completion on every send
222          * call.  Generally used after a panic to make sure stuff goes
223          * out.
224          */
225         bool                run_to_completion;
226 
227         /* The I/O port of an SI interface. */
228         int                 port;
229 
230         /*
231          * The space between start addresses of the two ports.  For
232          * instance, if the first port is 0xca2 and the spacing is 4, then
233          * the second port is 0xca6.
234          */
235         unsigned int        spacing;
236 
237         /* zero if no irq; */
238         int                 irq;
239 
240         /* The timer for this si. */
241         struct timer_list   si_timer;
242 
243         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244         bool                timer_running;
245 
246         /* The time (in jiffies) the last timeout occurred at. */
247         unsigned long       last_timeout_jiffies;
248 
249         /* Are we waiting for the events, pretimeouts, received msgs? */
250         atomic_t            need_watch;
251 
252         /*
253          * The driver will disable interrupts when it gets into a
254          * situation where it cannot handle messages due to lack of
255          * memory.  Once that situation clears up, it will re-enable
256          * interrupts.
257          */
258         bool interrupt_disabled;
259 
260         /*
261          * Does the BMC support events?
262          */
263         bool supports_event_msg_buff;
264 
265         /*
266          * Can we clear the global enables receive irq bit?
267          */
268         bool cannot_clear_recv_irq_bit;
269 
270         /*
271          * Did we get an attention that we did not handle?
272          */
273         bool got_attn;
274 
275         /* From the get device id response... */
276         struct ipmi_device_id device_id;
277 
278         /* Driver model stuff. */
279         struct device *dev;
280         struct platform_device *pdev;
281 
282         /*
283          * True if we allocated the device, false if it came from
284          * someplace else (like PCI).
285          */
286         bool dev_registered;
287 
288         /* Slave address, could be reported from DMI. */
289         unsigned char slave_addr;
290 
291         /* Counters and things for the proc filesystem. */
292         atomic_t stats[SI_NUM_STATS];
293 
294         struct task_struct *thread;
295 
296         struct list_head link;
297         union ipmi_smi_info_union addr_info;
298 };
299 
300 #define smi_inc_stat(smi, stat) \
301         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
302 #define smi_get_stat(smi, stat) \
303         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
304 
305 #define SI_MAX_PARMS 4
306 
307 static int force_kipmid[SI_MAX_PARMS];
308 static int num_force_kipmid;
309 #ifdef CONFIG_PCI
310 static bool pci_registered;
311 #endif
312 #ifdef CONFIG_ACPI
313 static bool pnp_registered;
314 #endif
315 #ifdef CONFIG_PARISC
316 static bool parisc_registered;
317 #endif
318 
319 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
320 static int num_max_busy_us;
321 
322 static bool unload_when_empty = true;
323 
324 static int add_smi(struct smi_info *smi);
325 static int try_smi_init(struct smi_info *smi);
326 static void cleanup_one_si(struct smi_info *to_clean);
327 static void cleanup_ipmi_si(void);
328 
329 #ifdef DEBUG_TIMING
330 void debug_timestamp(char *msg)
331 {
332         struct timespec64 t;
333 
334         getnstimeofday64(&t);
335         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
336 }
337 #else
338 #define debug_timestamp(x)
339 #endif
340 
341 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
342 static int register_xaction_notifier(struct notifier_block *nb)
343 {
344         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
345 }
346 
347 static void deliver_recv_msg(struct smi_info *smi_info,
348                              struct ipmi_smi_msg *msg)
349 {
350         /* Deliver the message to the upper layer. */
351         if (smi_info->intf)
352                 ipmi_smi_msg_received(smi_info->intf, msg);
353         else
354                 ipmi_free_smi_msg(msg);
355 }
356 
357 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
358 {
359         struct ipmi_smi_msg *msg = smi_info->curr_msg;
360 
361         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
362                 cCode = IPMI_ERR_UNSPECIFIED;
363         /* else use it as is */
364 
365         /* Make it a response */
366         msg->rsp[0] = msg->data[0] | 4;
367         msg->rsp[1] = msg->data[1];
368         msg->rsp[2] = cCode;
369         msg->rsp_size = 3;
370 
371         smi_info->curr_msg = NULL;
372         deliver_recv_msg(smi_info, msg);
373 }
374 
375 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
376 {
377         int              rv;
378 
379         if (!smi_info->waiting_msg) {
380                 smi_info->curr_msg = NULL;
381                 rv = SI_SM_IDLE;
382         } else {
383                 int err;
384 
385                 smi_info->curr_msg = smi_info->waiting_msg;
386                 smi_info->waiting_msg = NULL;
387                 debug_timestamp("Start2");
388                 err = atomic_notifier_call_chain(&xaction_notifier_list,
389                                 0, smi_info);
390                 if (err & NOTIFY_STOP_MASK) {
391                         rv = SI_SM_CALL_WITHOUT_DELAY;
392                         goto out;
393                 }
394                 err = smi_info->handlers->start_transaction(
395                         smi_info->si_sm,
396                         smi_info->curr_msg->data,
397                         smi_info->curr_msg->data_size);
398                 if (err)
399                         return_hosed_msg(smi_info, err);
400 
401                 rv = SI_SM_CALL_WITHOUT_DELAY;
402         }
403  out:
404         return rv;
405 }
406 
407 static void start_check_enables(struct smi_info *smi_info)
408 {
409         unsigned char msg[2];
410 
411         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
412         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
413 
414         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
415         smi_info->si_state = SI_CHECKING_ENABLES;
416 }
417 
418 static void start_clear_flags(struct smi_info *smi_info)
419 {
420         unsigned char msg[3];
421 
422         /* Make sure the watchdog pre-timeout flag is not set at startup. */
423         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
424         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
425         msg[2] = WDT_PRE_TIMEOUT_INT;
426 
427         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
428         smi_info->si_state = SI_CLEARING_FLAGS;
429 }
430 
431 static void start_getting_msg_queue(struct smi_info *smi_info)
432 {
433         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
434         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
435         smi_info->curr_msg->data_size = 2;
436 
437         smi_info->handlers->start_transaction(
438                 smi_info->si_sm,
439                 smi_info->curr_msg->data,
440                 smi_info->curr_msg->data_size);
441         smi_info->si_state = SI_GETTING_MESSAGES;
442 }
443 
444 static void start_getting_events(struct smi_info *smi_info)
445 {
446         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
447         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
448         smi_info->curr_msg->data_size = 2;
449 
450         smi_info->handlers->start_transaction(
451                 smi_info->si_sm,
452                 smi_info->curr_msg->data,
453                 smi_info->curr_msg->data_size);
454         smi_info->si_state = SI_GETTING_EVENTS;
455 }
456 
457 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
458 {
459         smi_info->last_timeout_jiffies = jiffies;
460         mod_timer(&smi_info->si_timer, new_val);
461         smi_info->timer_running = true;
462 }
463 
464 /*
465  * When we have a situtaion where we run out of memory and cannot
466  * allocate messages, we just leave them in the BMC and run the system
467  * polled until we can allocate some memory.  Once we have some
468  * memory, we will re-enable the interrupt.
469  *
470  * Note that we cannot just use disable_irq(), since the interrupt may
471  * be shared.
472  */
473 static inline bool disable_si_irq(struct smi_info *smi_info)
474 {
475         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
476                 smi_info->interrupt_disabled = true;
477                 start_check_enables(smi_info);
478                 return true;
479         }
480         return false;
481 }
482 
483 static inline bool enable_si_irq(struct smi_info *smi_info)
484 {
485         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
486                 smi_info->interrupt_disabled = false;
487                 start_check_enables(smi_info);
488                 return true;
489         }
490         return false;
491 }
492 
493 /*
494  * Allocate a message.  If unable to allocate, start the interrupt
495  * disable process and return NULL.  If able to allocate but
496  * interrupts are disabled, free the message and return NULL after
497  * starting the interrupt enable process.
498  */
499 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
500 {
501         struct ipmi_smi_msg *msg;
502 
503         msg = ipmi_alloc_smi_msg();
504         if (!msg) {
505                 if (!disable_si_irq(smi_info))
506                         smi_info->si_state = SI_NORMAL;
507         } else if (enable_si_irq(smi_info)) {
508                 ipmi_free_smi_msg(msg);
509                 msg = NULL;
510         }
511         return msg;
512 }
513 
514 static void handle_flags(struct smi_info *smi_info)
515 {
516  retry:
517         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
518                 /* Watchdog pre-timeout */
519                 smi_inc_stat(smi_info, watchdog_pretimeouts);
520 
521                 start_clear_flags(smi_info);
522                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
523                 if (smi_info->intf)
524                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
525         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
526                 /* Messages available. */
527                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
528                 if (!smi_info->curr_msg)
529                         return;
530 
531                 start_getting_msg_queue(smi_info);
532         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
533                 /* Events available. */
534                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
535                 if (!smi_info->curr_msg)
536                         return;
537 
538                 start_getting_events(smi_info);
539         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
540                    smi_info->oem_data_avail_handler) {
541                 if (smi_info->oem_data_avail_handler(smi_info))
542                         goto retry;
543         } else
544                 smi_info->si_state = SI_NORMAL;
545 }
546 
547 /*
548  * Global enables we care about.
549  */
550 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
551                              IPMI_BMC_EVT_MSG_INTR)
552 
553 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
554                                  bool *irq_on)
555 {
556         u8 enables = 0;
557 
558         if (smi_info->supports_event_msg_buff)
559                 enables |= IPMI_BMC_EVT_MSG_BUFF;
560 
561         if ((smi_info->irq && !smi_info->interrupt_disabled) ||
562             smi_info->cannot_clear_recv_irq_bit)
563                 enables |= IPMI_BMC_RCV_MSG_INTR;
564 
565         if (smi_info->supports_event_msg_buff &&
566             smi_info->irq && !smi_info->interrupt_disabled)
567 
568                 enables |= IPMI_BMC_EVT_MSG_INTR;
569 
570         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
571 
572         return enables;
573 }
574 
575 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
576 {
577         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
578 
579         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
580 
581         if ((bool)irqstate == irq_on)
582                 return;
583 
584         if (irq_on)
585                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
586                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
587         else
588                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
589 }
590 
591 static void handle_transaction_done(struct smi_info *smi_info)
592 {
593         struct ipmi_smi_msg *msg;
594 
595         debug_timestamp("Done");
596         switch (smi_info->si_state) {
597         case SI_NORMAL:
598                 if (!smi_info->curr_msg)
599                         break;
600 
601                 smi_info->curr_msg->rsp_size
602                         = smi_info->handlers->get_result(
603                                 smi_info->si_sm,
604                                 smi_info->curr_msg->rsp,
605                                 IPMI_MAX_MSG_LENGTH);
606 
607                 /*
608                  * Do this here becase deliver_recv_msg() releases the
609                  * lock, and a new message can be put in during the
610                  * time the lock is released.
611                  */
612                 msg = smi_info->curr_msg;
613                 smi_info->curr_msg = NULL;
614                 deliver_recv_msg(smi_info, msg);
615                 break;
616 
617         case SI_GETTING_FLAGS:
618         {
619                 unsigned char msg[4];
620                 unsigned int  len;
621 
622                 /* We got the flags from the SMI, now handle them. */
623                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
624                 if (msg[2] != 0) {
625                         /* Error fetching flags, just give up for now. */
626                         smi_info->si_state = SI_NORMAL;
627                 } else if (len < 4) {
628                         /*
629                          * Hmm, no flags.  That's technically illegal, but
630                          * don't use uninitialized data.
631                          */
632                         smi_info->si_state = SI_NORMAL;
633                 } else {
634                         smi_info->msg_flags = msg[3];
635                         handle_flags(smi_info);
636                 }
637                 break;
638         }
639 
640         case SI_CLEARING_FLAGS:
641         {
642                 unsigned char msg[3];
643 
644                 /* We cleared the flags. */
645                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
646                 if (msg[2] != 0) {
647                         /* Error clearing flags */
648                         dev_warn(smi_info->dev,
649                                  "Error clearing flags: %2.2x\n", msg[2]);
650                 }
651                 smi_info->si_state = SI_NORMAL;
652                 break;
653         }
654 
655         case SI_GETTING_EVENTS:
656         {
657                 smi_info->curr_msg->rsp_size
658                         = smi_info->handlers->get_result(
659                                 smi_info->si_sm,
660                                 smi_info->curr_msg->rsp,
661                                 IPMI_MAX_MSG_LENGTH);
662 
663                 /*
664                  * Do this here becase deliver_recv_msg() releases the
665                  * lock, and a new message can be put in during the
666                  * time the lock is released.
667                  */
668                 msg = smi_info->curr_msg;
669                 smi_info->curr_msg = NULL;
670                 if (msg->rsp[2] != 0) {
671                         /* Error getting event, probably done. */
672                         msg->done(msg);
673 
674                         /* Take off the event flag. */
675                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
676                         handle_flags(smi_info);
677                 } else {
678                         smi_inc_stat(smi_info, events);
679 
680                         /*
681                          * Do this before we deliver the message
682                          * because delivering the message releases the
683                          * lock and something else can mess with the
684                          * state.
685                          */
686                         handle_flags(smi_info);
687 
688                         deliver_recv_msg(smi_info, msg);
689                 }
690                 break;
691         }
692 
693         case SI_GETTING_MESSAGES:
694         {
695                 smi_info->curr_msg->rsp_size
696                         = smi_info->handlers->get_result(
697                                 smi_info->si_sm,
698                                 smi_info->curr_msg->rsp,
699                                 IPMI_MAX_MSG_LENGTH);
700 
701                 /*
702                  * Do this here becase deliver_recv_msg() releases the
703                  * lock, and a new message can be put in during the
704                  * time the lock is released.
705                  */
706                 msg = smi_info->curr_msg;
707                 smi_info->curr_msg = NULL;
708                 if (msg->rsp[2] != 0) {
709                         /* Error getting event, probably done. */
710                         msg->done(msg);
711 
712                         /* Take off the msg flag. */
713                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
714                         handle_flags(smi_info);
715                 } else {
716                         smi_inc_stat(smi_info, incoming_messages);
717 
718                         /*
719                          * Do this before we deliver the message
720                          * because delivering the message releases the
721                          * lock and something else can mess with the
722                          * state.
723                          */
724                         handle_flags(smi_info);
725 
726                         deliver_recv_msg(smi_info, msg);
727                 }
728                 break;
729         }
730 
731         case SI_CHECKING_ENABLES:
732         {
733                 unsigned char msg[4];
734                 u8 enables;
735                 bool irq_on;
736 
737                 /* We got the flags from the SMI, now handle them. */
738                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
739                 if (msg[2] != 0) {
740                         dev_warn(smi_info->dev,
741                                  "Couldn't get irq info: %x.\n", msg[2]);
742                         dev_warn(smi_info->dev,
743                                  "Maybe ok, but ipmi might run very slowly.\n");
744                         smi_info->si_state = SI_NORMAL;
745                         break;
746                 }
747                 enables = current_global_enables(smi_info, 0, &irq_on);
748                 if (smi_info->si_type == SI_BT)
749                         /* BT has its own interrupt enable bit. */
750                         check_bt_irq(smi_info, irq_on);
751                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
752                         /* Enables are not correct, fix them. */
753                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
754                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
755                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
756                         smi_info->handlers->start_transaction(
757                                 smi_info->si_sm, msg, 3);
758                         smi_info->si_state = SI_SETTING_ENABLES;
759                 } else if (smi_info->supports_event_msg_buff) {
760                         smi_info->curr_msg = ipmi_alloc_smi_msg();
761                         if (!smi_info->curr_msg) {
762                                 smi_info->si_state = SI_NORMAL;
763                                 break;
764                         }
765                         start_getting_msg_queue(smi_info);
766                 } else {
767                         smi_info->si_state = SI_NORMAL;
768                 }
769                 break;
770         }
771 
772         case SI_SETTING_ENABLES:
773         {
774                 unsigned char msg[4];
775 
776                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
777                 if (msg[2] != 0)
778                         dev_warn(smi_info->dev,
779                                  "Could not set the global enables: 0x%x.\n",
780                                  msg[2]);
781 
782                 if (smi_info->supports_event_msg_buff) {
783                         smi_info->curr_msg = ipmi_alloc_smi_msg();
784                         if (!smi_info->curr_msg) {
785                                 smi_info->si_state = SI_NORMAL;
786                                 break;
787                         }
788                         start_getting_msg_queue(smi_info);
789                 } else {
790                         smi_info->si_state = SI_NORMAL;
791                 }
792                 break;
793         }
794         }
795 }
796 
797 /*
798  * Called on timeouts and events.  Timeouts should pass the elapsed
799  * time, interrupts should pass in zero.  Must be called with
800  * si_lock held and interrupts disabled.
801  */
802 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
803                                            int time)
804 {
805         enum si_sm_result si_sm_result;
806 
807  restart:
808         /*
809          * There used to be a loop here that waited a little while
810          * (around 25us) before giving up.  That turned out to be
811          * pointless, the minimum delays I was seeing were in the 300us
812          * range, which is far too long to wait in an interrupt.  So
813          * we just run until the state machine tells us something
814          * happened or it needs a delay.
815          */
816         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
817         time = 0;
818         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
819                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
820 
821         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
822                 smi_inc_stat(smi_info, complete_transactions);
823 
824                 handle_transaction_done(smi_info);
825                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
826         } else if (si_sm_result == SI_SM_HOSED) {
827                 smi_inc_stat(smi_info, hosed_count);
828 
829                 /*
830                  * Do the before return_hosed_msg, because that
831                  * releases the lock.
832                  */
833                 smi_info->si_state = SI_NORMAL;
834                 if (smi_info->curr_msg != NULL) {
835                         /*
836                          * If we were handling a user message, format
837                          * a response to send to the upper layer to
838                          * tell it about the error.
839                          */
840                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
841                 }
842                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
843         }
844 
845         /*
846          * We prefer handling attn over new messages.  But don't do
847          * this if there is not yet an upper layer to handle anything.
848          */
849         if (likely(smi_info->intf) &&
850             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
851                 unsigned char msg[2];
852 
853                 if (smi_info->si_state != SI_NORMAL) {
854                         /*
855                          * We got an ATTN, but we are doing something else.
856                          * Handle the ATTN later.
857                          */
858                         smi_info->got_attn = true;
859                 } else {
860                         smi_info->got_attn = false;
861                         smi_inc_stat(smi_info, attentions);
862 
863                         /*
864                          * Got a attn, send down a get message flags to see
865                          * what's causing it.  It would be better to handle
866                          * this in the upper layer, but due to the way
867                          * interrupts work with the SMI, that's not really
868                          * possible.
869                          */
870                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
871                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
872 
873                         smi_info->handlers->start_transaction(
874                                 smi_info->si_sm, msg, 2);
875                         smi_info->si_state = SI_GETTING_FLAGS;
876                         goto restart;
877                 }
878         }
879 
880         /* If we are currently idle, try to start the next message. */
881         if (si_sm_result == SI_SM_IDLE) {
882                 smi_inc_stat(smi_info, idles);
883 
884                 si_sm_result = start_next_msg(smi_info);
885                 if (si_sm_result != SI_SM_IDLE)
886                         goto restart;
887         }
888 
889         if ((si_sm_result == SI_SM_IDLE)
890             && (atomic_read(&smi_info->req_events))) {
891                 /*
892                  * We are idle and the upper layer requested that I fetch
893                  * events, so do so.
894                  */
895                 atomic_set(&smi_info->req_events, 0);
896 
897                 /*
898                  * Take this opportunity to check the interrupt and
899                  * message enable state for the BMC.  The BMC can be
900                  * asynchronously reset, and may thus get interrupts
901                  * disable and messages disabled.
902                  */
903                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
904                         start_check_enables(smi_info);
905                 } else {
906                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
907                         if (!smi_info->curr_msg)
908                                 goto out;
909 
910                         start_getting_events(smi_info);
911                 }
912                 goto restart;
913         }
914  out:
915         return si_sm_result;
916 }
917 
918 static void check_start_timer_thread(struct smi_info *smi_info)
919 {
920         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
921                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
922 
923                 if (smi_info->thread)
924                         wake_up_process(smi_info->thread);
925 
926                 start_next_msg(smi_info);
927                 smi_event_handler(smi_info, 0);
928         }
929 }
930 
931 static void sender(void                *send_info,
932                    struct ipmi_smi_msg *msg)
933 {
934         struct smi_info   *smi_info = send_info;
935         enum si_sm_result result;
936         unsigned long     flags;
937 
938         debug_timestamp("Enqueue");
939 
940         if (smi_info->run_to_completion) {
941                 /*
942                  * If we are running to completion, start it and run
943                  * transactions until everything is clear.
944                  */
945                 smi_info->waiting_msg = msg;
946 
947                 /*
948                  * Run to completion means we are single-threaded, no
949                  * need for locks.
950                  */
951 
952                 result = smi_event_handler(smi_info, 0);
953                 while (result != SI_SM_IDLE) {
954                         udelay(SI_SHORT_TIMEOUT_USEC);
955                         result = smi_event_handler(smi_info,
956                                                    SI_SHORT_TIMEOUT_USEC);
957                 }
958                 return;
959         }
960 
961         spin_lock_irqsave(&smi_info->si_lock, flags);
962         /*
963          * The following two lines don't need to be under the lock for
964          * the lock's sake, but they do need SMP memory barriers to
965          * avoid getting things out of order.  We are already claiming
966          * the lock, anyway, so just do it under the lock to avoid the
967          * ordering problem.
968          */
969         BUG_ON(smi_info->waiting_msg);
970         smi_info->waiting_msg = msg;
971         check_start_timer_thread(smi_info);
972         spin_unlock_irqrestore(&smi_info->si_lock, flags);
973 }
974 
975 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
976 {
977         struct smi_info   *smi_info = send_info;
978         enum si_sm_result result;
979 
980         smi_info->run_to_completion = i_run_to_completion;
981         if (i_run_to_completion) {
982                 result = smi_event_handler(smi_info, 0);
983                 while (result != SI_SM_IDLE) {
984                         udelay(SI_SHORT_TIMEOUT_USEC);
985                         result = smi_event_handler(smi_info,
986                                                    SI_SHORT_TIMEOUT_USEC);
987                 }
988         }
989 }
990 
991 /*
992  * Use -1 in the nsec value of the busy waiting timespec to tell that
993  * we are spinning in kipmid looking for something and not delaying
994  * between checks
995  */
996 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
997 {
998         ts->tv_nsec = -1;
999 }
1000 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1001 {
1002         return ts->tv_nsec != -1;
1003 }
1004 
1005 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1006                                         const struct smi_info *smi_info,
1007                                         struct timespec64 *busy_until)
1008 {
1009         unsigned int max_busy_us = 0;
1010 
1011         if (smi_info->intf_num < num_max_busy_us)
1012                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1013         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1014                 ipmi_si_set_not_busy(busy_until);
1015         else if (!ipmi_si_is_busy(busy_until)) {
1016                 getnstimeofday64(busy_until);
1017                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1018         } else {
1019                 struct timespec64 now;
1020 
1021                 getnstimeofday64(&now);
1022                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1023                         ipmi_si_set_not_busy(busy_until);
1024                         return 0;
1025                 }
1026         }
1027         return 1;
1028 }
1029 
1030 
1031 /*
1032  * A busy-waiting loop for speeding up IPMI operation.
1033  *
1034  * Lousy hardware makes this hard.  This is only enabled for systems
1035  * that are not BT and do not have interrupts.  It starts spinning
1036  * when an operation is complete or until max_busy tells it to stop
1037  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1038  * Documentation/IPMI.txt for details.
1039  */
1040 static int ipmi_thread(void *data)
1041 {
1042         struct smi_info *smi_info = data;
1043         unsigned long flags;
1044         enum si_sm_result smi_result;
1045         struct timespec64 busy_until;
1046 
1047         ipmi_si_set_not_busy(&busy_until);
1048         set_user_nice(current, MAX_NICE);
1049         while (!kthread_should_stop()) {
1050                 int busy_wait;
1051 
1052                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1053                 smi_result = smi_event_handler(smi_info, 0);
1054 
1055                 /*
1056                  * If the driver is doing something, there is a possible
1057                  * race with the timer.  If the timer handler see idle,
1058                  * and the thread here sees something else, the timer
1059                  * handler won't restart the timer even though it is
1060                  * required.  So start it here if necessary.
1061                  */
1062                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1063                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1064 
1065                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1067                                                   &busy_until);
1068                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1069                         ; /* do nothing */
1070                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1071                         schedule();
1072                 else if (smi_result == SI_SM_IDLE) {
1073                         if (atomic_read(&smi_info->need_watch)) {
1074                                 schedule_timeout_interruptible(100);
1075                         } else {
1076                                 /* Wait to be woken up when we are needed. */
1077                                 __set_current_state(TASK_INTERRUPTIBLE);
1078                                 schedule();
1079                         }
1080                 } else
1081                         schedule_timeout_interruptible(1);
1082         }
1083         return 0;
1084 }
1085 
1086 
1087 static void poll(void *send_info)
1088 {
1089         struct smi_info *smi_info = send_info;
1090         unsigned long flags = 0;
1091         bool run_to_completion = smi_info->run_to_completion;
1092 
1093         /*
1094          * Make sure there is some delay in the poll loop so we can
1095          * drive time forward and timeout things.
1096          */
1097         udelay(10);
1098         if (!run_to_completion)
1099                 spin_lock_irqsave(&smi_info->si_lock, flags);
1100         smi_event_handler(smi_info, 10);
1101         if (!run_to_completion)
1102                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1103 }
1104 
1105 static void request_events(void *send_info)
1106 {
1107         struct smi_info *smi_info = send_info;
1108 
1109         if (!smi_info->has_event_buffer)
1110                 return;
1111 
1112         atomic_set(&smi_info->req_events, 1);
1113 }
1114 
1115 static void set_need_watch(void *send_info, bool enable)
1116 {
1117         struct smi_info *smi_info = send_info;
1118         unsigned long flags;
1119 
1120         atomic_set(&smi_info->need_watch, enable);
1121         spin_lock_irqsave(&smi_info->si_lock, flags);
1122         check_start_timer_thread(smi_info);
1123         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1124 }
1125 
1126 static int initialized;
1127 
1128 static void smi_timeout(unsigned long data)
1129 {
1130         struct smi_info   *smi_info = (struct smi_info *) data;
1131         enum si_sm_result smi_result;
1132         unsigned long     flags;
1133         unsigned long     jiffies_now;
1134         long              time_diff;
1135         long              timeout;
1136 
1137         spin_lock_irqsave(&(smi_info->si_lock), flags);
1138         debug_timestamp("Timer");
1139 
1140         jiffies_now = jiffies;
1141         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1142                      * SI_USEC_PER_JIFFY);
1143         smi_result = smi_event_handler(smi_info, time_diff);
1144 
1145         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1146                 /* Running with interrupts, only do long timeouts. */
1147                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1148                 smi_inc_stat(smi_info, long_timeouts);
1149                 goto do_mod_timer;
1150         }
1151 
1152         /*
1153          * If the state machine asks for a short delay, then shorten
1154          * the timer timeout.
1155          */
1156         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1157                 smi_inc_stat(smi_info, short_timeouts);
1158                 timeout = jiffies + 1;
1159         } else {
1160                 smi_inc_stat(smi_info, long_timeouts);
1161                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1162         }
1163 
1164  do_mod_timer:
1165         if (smi_result != SI_SM_IDLE)
1166                 smi_mod_timer(smi_info, timeout);
1167         else
1168                 smi_info->timer_running = false;
1169         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1170 }
1171 
1172 static irqreturn_t si_irq_handler(int irq, void *data)
1173 {
1174         struct smi_info *smi_info = data;
1175         unsigned long   flags;
1176 
1177         spin_lock_irqsave(&(smi_info->si_lock), flags);
1178 
1179         smi_inc_stat(smi_info, interrupts);
1180 
1181         debug_timestamp("Interrupt");
1182 
1183         smi_event_handler(smi_info, 0);
1184         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1185         return IRQ_HANDLED;
1186 }
1187 
1188 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1189 {
1190         struct smi_info *smi_info = data;
1191         /* We need to clear the IRQ flag for the BT interface. */
1192         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1193                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1194                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1195         return si_irq_handler(irq, data);
1196 }
1197 
1198 static int smi_start_processing(void       *send_info,
1199                                 ipmi_smi_t intf)
1200 {
1201         struct smi_info *new_smi = send_info;
1202         int             enable = 0;
1203 
1204         new_smi->intf = intf;
1205 
1206         /* Try to claim any interrupts. */
1207         if (new_smi->irq_setup)
1208                 new_smi->irq_setup(new_smi);
1209 
1210         /* Set up the timer that drives the interface. */
1211         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1212         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1213 
1214         /*
1215          * Check if the user forcefully enabled the daemon.
1216          */
1217         if (new_smi->intf_num < num_force_kipmid)
1218                 enable = force_kipmid[new_smi->intf_num];
1219         /*
1220          * The BT interface is efficient enough to not need a thread,
1221          * and there is no need for a thread if we have interrupts.
1222          */
1223         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1224                 enable = 1;
1225 
1226         if (enable) {
1227                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1228                                               "kipmi%d", new_smi->intf_num);
1229                 if (IS_ERR(new_smi->thread)) {
1230                         dev_notice(new_smi->dev, "Could not start"
1231                                    " kernel thread due to error %ld, only using"
1232                                    " timers to drive the interface\n",
1233                                    PTR_ERR(new_smi->thread));
1234                         new_smi->thread = NULL;
1235                 }
1236         }
1237 
1238         return 0;
1239 }
1240 
1241 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1242 {
1243         struct smi_info *smi = send_info;
1244 
1245         data->addr_src = smi->addr_source;
1246         data->dev = smi->dev;
1247         data->addr_info = smi->addr_info;
1248         get_device(smi->dev);
1249 
1250         return 0;
1251 }
1252 
1253 static void set_maintenance_mode(void *send_info, bool enable)
1254 {
1255         struct smi_info   *smi_info = send_info;
1256 
1257         if (!enable)
1258                 atomic_set(&smi_info->req_events, 0);
1259 }
1260 
1261 static struct ipmi_smi_handlers handlers = {
1262         .owner                  = THIS_MODULE,
1263         .start_processing       = smi_start_processing,
1264         .get_smi_info           = get_smi_info,
1265         .sender                 = sender,
1266         .request_events         = request_events,
1267         .set_need_watch         = set_need_watch,
1268         .set_maintenance_mode   = set_maintenance_mode,
1269         .set_run_to_completion  = set_run_to_completion,
1270         .poll                   = poll,
1271 };
1272 
1273 /*
1274  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1275  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1276  */
1277 
1278 static LIST_HEAD(smi_infos);
1279 static DEFINE_MUTEX(smi_infos_lock);
1280 static int smi_num; /* Used to sequence the SMIs */
1281 
1282 #define DEFAULT_REGSPACING      1
1283 #define DEFAULT_REGSIZE         1
1284 
1285 #ifdef CONFIG_ACPI
1286 static bool          si_tryacpi = 1;
1287 #endif
1288 #ifdef CONFIG_DMI
1289 static bool          si_trydmi = 1;
1290 #endif
1291 static bool          si_tryplatform = 1;
1292 #ifdef CONFIG_PCI
1293 static bool          si_trypci = 1;
1294 #endif
1295 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1296 static char          *si_type[SI_MAX_PARMS];
1297 #define MAX_SI_TYPE_STR 30
1298 static char          si_type_str[MAX_SI_TYPE_STR];
1299 static unsigned long addrs[SI_MAX_PARMS];
1300 static unsigned int num_addrs;
1301 static unsigned int  ports[SI_MAX_PARMS];
1302 static unsigned int num_ports;
1303 static int           irqs[SI_MAX_PARMS];
1304 static unsigned int num_irqs;
1305 static int           regspacings[SI_MAX_PARMS];
1306 static unsigned int num_regspacings;
1307 static int           regsizes[SI_MAX_PARMS];
1308 static unsigned int num_regsizes;
1309 static int           regshifts[SI_MAX_PARMS];
1310 static unsigned int num_regshifts;
1311 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1312 static unsigned int num_slave_addrs;
1313 
1314 #define IPMI_IO_ADDR_SPACE  0
1315 #define IPMI_MEM_ADDR_SPACE 1
1316 static char *addr_space_to_str[] = { "i/o", "mem" };
1317 
1318 static int hotmod_handler(const char *val, struct kernel_param *kp);
1319 
1320 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1321 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1322                  " Documentation/IPMI.txt in the kernel sources for the"
1323                  " gory details.");
1324 
1325 #ifdef CONFIG_ACPI
1326 module_param_named(tryacpi, si_tryacpi, bool, 0);
1327 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1328                  " default scan of the interfaces identified via ACPI");
1329 #endif
1330 #ifdef CONFIG_DMI
1331 module_param_named(trydmi, si_trydmi, bool, 0);
1332 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1333                  " default scan of the interfaces identified via DMI");
1334 #endif
1335 module_param_named(tryplatform, si_tryplatform, bool, 0);
1336 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1337                  " default scan of the interfaces identified via platform"
1338                  " interfaces like openfirmware");
1339 #ifdef CONFIG_PCI
1340 module_param_named(trypci, si_trypci, bool, 0);
1341 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1342                  " default scan of the interfaces identified via pci");
1343 #endif
1344 module_param_named(trydefaults, si_trydefaults, bool, 0);
1345 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1346                  " default scan of the KCS and SMIC interface at the standard"
1347                  " address");
1348 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1349 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1350                  " interface separated by commas.  The types are 'kcs',"
1351                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1352                  " the first interface to kcs and the second to bt");
1353 module_param_array(addrs, ulong, &num_addrs, 0);
1354 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1355                  " addresses separated by commas.  Only use if an interface"
1356                  " is in memory.  Otherwise, set it to zero or leave"
1357                  " it blank.");
1358 module_param_array(ports, uint, &num_ports, 0);
1359 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1360                  " addresses separated by commas.  Only use if an interface"
1361                  " is a port.  Otherwise, set it to zero or leave"
1362                  " it blank.");
1363 module_param_array(irqs, int, &num_irqs, 0);
1364 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1365                  " addresses separated by commas.  Only use if an interface"
1366                  " has an interrupt.  Otherwise, set it to zero or leave"
1367                  " it blank.");
1368 module_param_array(regspacings, int, &num_regspacings, 0);
1369 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1370                  " and each successive register used by the interface.  For"
1371                  " instance, if the start address is 0xca2 and the spacing"
1372                  " is 2, then the second address is at 0xca4.  Defaults"
1373                  " to 1.");
1374 module_param_array(regsizes, int, &num_regsizes, 0);
1375 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1376                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1377                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1378                  " the 8-bit IPMI register has to be read from a larger"
1379                  " register.");
1380 module_param_array(regshifts, int, &num_regshifts, 0);
1381 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1382                  " IPMI register, in bits.  For instance, if the data"
1383                  " is read from a 32-bit word and the IPMI data is in"
1384                  " bit 8-15, then the shift would be 8");
1385 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1386 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1387                  " the controller.  Normally this is 0x20, but can be"
1388                  " overridden by this parm.  This is an array indexed"
1389                  " by interface number.");
1390 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1391 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1392                  " disabled(0).  Normally the IPMI driver auto-detects"
1393                  " this, but the value may be overridden by this parm.");
1394 module_param(unload_when_empty, bool, 0);
1395 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1396                  " specified or found, default is 1.  Setting to 0"
1397                  " is useful for hot add of devices using hotmod.");
1398 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1399 MODULE_PARM_DESC(kipmid_max_busy_us,
1400                  "Max time (in microseconds) to busy-wait for IPMI data before"
1401                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1402                  " if kipmid is using up a lot of CPU time.");
1403 
1404 
1405 static void std_irq_cleanup(struct smi_info *info)
1406 {
1407         if (info->si_type == SI_BT)
1408                 /* Disable the interrupt in the BT interface. */
1409                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1410         free_irq(info->irq, info);
1411 }
1412 
1413 static int std_irq_setup(struct smi_info *info)
1414 {
1415         int rv;
1416 
1417         if (!info->irq)
1418                 return 0;
1419 
1420         if (info->si_type == SI_BT) {
1421                 rv = request_irq(info->irq,
1422                                  si_bt_irq_handler,
1423                                  IRQF_SHARED,
1424                                  DEVICE_NAME,
1425                                  info);
1426                 if (!rv)
1427                         /* Enable the interrupt in the BT interface. */
1428                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1429                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1430         } else
1431                 rv = request_irq(info->irq,
1432                                  si_irq_handler,
1433                                  IRQF_SHARED,
1434                                  DEVICE_NAME,
1435                                  info);
1436         if (rv) {
1437                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1438                          " running polled\n",
1439                          DEVICE_NAME, info->irq);
1440                 info->irq = 0;
1441         } else {
1442                 info->irq_cleanup = std_irq_cleanup;
1443                 dev_info(info->dev, "Using irq %d\n", info->irq);
1444         }
1445 
1446         return rv;
1447 }
1448 
1449 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1450 {
1451         unsigned int addr = io->addr_data;
1452 
1453         return inb(addr + (offset * io->regspacing));
1454 }
1455 
1456 static void port_outb(struct si_sm_io *io, unsigned int offset,
1457                       unsigned char b)
1458 {
1459         unsigned int addr = io->addr_data;
1460 
1461         outb(b, addr + (offset * io->regspacing));
1462 }
1463 
1464 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1465 {
1466         unsigned int addr = io->addr_data;
1467 
1468         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1469 }
1470 
1471 static void port_outw(struct si_sm_io *io, unsigned int offset,
1472                       unsigned char b)
1473 {
1474         unsigned int addr = io->addr_data;
1475 
1476         outw(b << io->regshift, addr + (offset * io->regspacing));
1477 }
1478 
1479 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1480 {
1481         unsigned int addr = io->addr_data;
1482 
1483         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1484 }
1485 
1486 static void port_outl(struct si_sm_io *io, unsigned int offset,
1487                       unsigned char b)
1488 {
1489         unsigned int addr = io->addr_data;
1490 
1491         outl(b << io->regshift, addr+(offset * io->regspacing));
1492 }
1493 
1494 static void port_cleanup(struct smi_info *info)
1495 {
1496         unsigned int addr = info->io.addr_data;
1497         int          idx;
1498 
1499         if (addr) {
1500                 for (idx = 0; idx < info->io_size; idx++)
1501                         release_region(addr + idx * info->io.regspacing,
1502                                        info->io.regsize);
1503         }
1504 }
1505 
1506 static int port_setup(struct smi_info *info)
1507 {
1508         unsigned int addr = info->io.addr_data;
1509         int          idx;
1510 
1511         if (!addr)
1512                 return -ENODEV;
1513 
1514         info->io_cleanup = port_cleanup;
1515 
1516         /*
1517          * Figure out the actual inb/inw/inl/etc routine to use based
1518          * upon the register size.
1519          */
1520         switch (info->io.regsize) {
1521         case 1:
1522                 info->io.inputb = port_inb;
1523                 info->io.outputb = port_outb;
1524                 break;
1525         case 2:
1526                 info->io.inputb = port_inw;
1527                 info->io.outputb = port_outw;
1528                 break;
1529         case 4:
1530                 info->io.inputb = port_inl;
1531                 info->io.outputb = port_outl;
1532                 break;
1533         default:
1534                 dev_warn(info->dev, "Invalid register size: %d\n",
1535                          info->io.regsize);
1536                 return -EINVAL;
1537         }
1538 
1539         /*
1540          * Some BIOSes reserve disjoint I/O regions in their ACPI
1541          * tables.  This causes problems when trying to register the
1542          * entire I/O region.  Therefore we must register each I/O
1543          * port separately.
1544          */
1545         for (idx = 0; idx < info->io_size; idx++) {
1546                 if (request_region(addr + idx * info->io.regspacing,
1547                                    info->io.regsize, DEVICE_NAME) == NULL) {
1548                         /* Undo allocations */
1549                         while (idx--) {
1550                                 release_region(addr + idx * info->io.regspacing,
1551                                                info->io.regsize);
1552                         }
1553                         return -EIO;
1554                 }
1555         }
1556         return 0;
1557 }
1558 
1559 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1560 {
1561         return readb((io->addr)+(offset * io->regspacing));
1562 }
1563 
1564 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1565                      unsigned char b)
1566 {
1567         writeb(b, (io->addr)+(offset * io->regspacing));
1568 }
1569 
1570 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1571 {
1572         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1573                 & 0xff;
1574 }
1575 
1576 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1577                      unsigned char b)
1578 {
1579         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1580 }
1581 
1582 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1583 {
1584         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1585                 & 0xff;
1586 }
1587 
1588 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1589                      unsigned char b)
1590 {
1591         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1592 }
1593 
1594 #ifdef readq
1595 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1596 {
1597         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1598                 & 0xff;
1599 }
1600 
1601 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1602                      unsigned char b)
1603 {
1604         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1605 }
1606 #endif
1607 
1608 static void mem_cleanup(struct smi_info *info)
1609 {
1610         unsigned long addr = info->io.addr_data;
1611         int           mapsize;
1612 
1613         if (info->io.addr) {
1614                 iounmap(info->io.addr);
1615 
1616                 mapsize = ((info->io_size * info->io.regspacing)
1617                            - (info->io.regspacing - info->io.regsize));
1618 
1619                 release_mem_region(addr, mapsize);
1620         }
1621 }
1622 
1623 static int mem_setup(struct smi_info *info)
1624 {
1625         unsigned long addr = info->io.addr_data;
1626         int           mapsize;
1627 
1628         if (!addr)
1629                 return -ENODEV;
1630 
1631         info->io_cleanup = mem_cleanup;
1632 
1633         /*
1634          * Figure out the actual readb/readw/readl/etc routine to use based
1635          * upon the register size.
1636          */
1637         switch (info->io.regsize) {
1638         case 1:
1639                 info->io.inputb = intf_mem_inb;
1640                 info->io.outputb = intf_mem_outb;
1641                 break;
1642         case 2:
1643                 info->io.inputb = intf_mem_inw;
1644                 info->io.outputb = intf_mem_outw;
1645                 break;
1646         case 4:
1647                 info->io.inputb = intf_mem_inl;
1648                 info->io.outputb = intf_mem_outl;
1649                 break;
1650 #ifdef readq
1651         case 8:
1652                 info->io.inputb = mem_inq;
1653                 info->io.outputb = mem_outq;
1654                 break;
1655 #endif
1656         default:
1657                 dev_warn(info->dev, "Invalid register size: %d\n",
1658                          info->io.regsize);
1659                 return -EINVAL;
1660         }
1661 
1662         /*
1663          * Calculate the total amount of memory to claim.  This is an
1664          * unusual looking calculation, but it avoids claiming any
1665          * more memory than it has to.  It will claim everything
1666          * between the first address to the end of the last full
1667          * register.
1668          */
1669         mapsize = ((info->io_size * info->io.regspacing)
1670                    - (info->io.regspacing - info->io.regsize));
1671 
1672         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1673                 return -EIO;
1674 
1675         info->io.addr = ioremap(addr, mapsize);
1676         if (info->io.addr == NULL) {
1677                 release_mem_region(addr, mapsize);
1678                 return -EIO;
1679         }
1680         return 0;
1681 }
1682 
1683 /*
1684  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1685  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1686  * Options are:
1687  *   rsp=<regspacing>
1688  *   rsi=<regsize>
1689  *   rsh=<regshift>
1690  *   irq=<irq>
1691  *   ipmb=<ipmb addr>
1692  */
1693 enum hotmod_op { HM_ADD, HM_REMOVE };
1694 struct hotmod_vals {
1695         char *name;
1696         int  val;
1697 };
1698 static struct hotmod_vals hotmod_ops[] = {
1699         { "add",        HM_ADD },
1700         { "remove",     HM_REMOVE },
1701         { NULL }
1702 };
1703 static struct hotmod_vals hotmod_si[] = {
1704         { "kcs",        SI_KCS },
1705         { "smic",       SI_SMIC },
1706         { "bt",         SI_BT },
1707         { NULL }
1708 };
1709 static struct hotmod_vals hotmod_as[] = {
1710         { "mem",        IPMI_MEM_ADDR_SPACE },
1711         { "i/o",        IPMI_IO_ADDR_SPACE },
1712         { NULL }
1713 };
1714 
1715 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1716 {
1717         char *s;
1718         int  i;
1719 
1720         s = strchr(*curr, ',');
1721         if (!s) {
1722                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1723                 return -EINVAL;
1724         }
1725         *s = '\0';
1726         s++;
1727         for (i = 0; v[i].name; i++) {
1728                 if (strcmp(*curr, v[i].name) == 0) {
1729                         *val = v[i].val;
1730                         *curr = s;
1731                         return 0;
1732                 }
1733         }
1734 
1735         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1736         return -EINVAL;
1737 }
1738 
1739 static int check_hotmod_int_op(const char *curr, const char *option,
1740                                const char *name, int *val)
1741 {
1742         char *n;
1743 
1744         if (strcmp(curr, name) == 0) {
1745                 if (!option) {
1746                         printk(KERN_WARNING PFX
1747                                "No option given for '%s'\n",
1748                                curr);
1749                         return -EINVAL;
1750                 }
1751                 *val = simple_strtoul(option, &n, 0);
1752                 if ((*n != '\0') || (*option == '\0')) {
1753                         printk(KERN_WARNING PFX
1754                                "Bad option given for '%s'\n",
1755                                curr);
1756                         return -EINVAL;
1757                 }
1758                 return 1;
1759         }
1760         return 0;
1761 }
1762 
1763 static struct smi_info *smi_info_alloc(void)
1764 {
1765         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1766 
1767         if (info)
1768                 spin_lock_init(&info->si_lock);
1769         return info;
1770 }
1771 
1772 static int hotmod_handler(const char *val, struct kernel_param *kp)
1773 {
1774         char *str = kstrdup(val, GFP_KERNEL);
1775         int  rv;
1776         char *next, *curr, *s, *n, *o;
1777         enum hotmod_op op;
1778         enum si_type si_type;
1779         int  addr_space;
1780         unsigned long addr;
1781         int regspacing;
1782         int regsize;
1783         int regshift;
1784         int irq;
1785         int ipmb;
1786         int ival;
1787         int len;
1788         struct smi_info *info;
1789 
1790         if (!str)
1791                 return -ENOMEM;
1792 
1793         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1794         len = strlen(str);
1795         ival = len - 1;
1796         while ((ival >= 0) && isspace(str[ival])) {
1797                 str[ival] = '\0';
1798                 ival--;
1799         }
1800 
1801         for (curr = str; curr; curr = next) {
1802                 regspacing = 1;
1803                 regsize = 1;
1804                 regshift = 0;
1805                 irq = 0;
1806                 ipmb = 0; /* Choose the default if not specified */
1807 
1808                 next = strchr(curr, ':');
1809                 if (next) {
1810                         *next = '\0';
1811                         next++;
1812                 }
1813 
1814                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1815                 if (rv)
1816                         break;
1817                 op = ival;
1818 
1819                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1820                 if (rv)
1821                         break;
1822                 si_type = ival;
1823 
1824                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1825                 if (rv)
1826                         break;
1827 
1828                 s = strchr(curr, ',');
1829                 if (s) {
1830                         *s = '\0';
1831                         s++;
1832                 }
1833                 addr = simple_strtoul(curr, &n, 0);
1834                 if ((*n != '\0') || (*curr == '\0')) {
1835                         printk(KERN_WARNING PFX "Invalid hotmod address"
1836                                " '%s'\n", curr);
1837                         break;
1838                 }
1839 
1840                 while (s) {
1841                         curr = s;
1842                         s = strchr(curr, ',');
1843                         if (s) {
1844                                 *s = '\0';
1845                                 s++;
1846                         }
1847                         o = strchr(curr, '=');
1848                         if (o) {
1849                                 *o = '\0';
1850                                 o++;
1851                         }
1852                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1853                         if (rv < 0)
1854                                 goto out;
1855                         else if (rv)
1856                                 continue;
1857                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1858                         if (rv < 0)
1859                                 goto out;
1860                         else if (rv)
1861                                 continue;
1862                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1863                         if (rv < 0)
1864                                 goto out;
1865                         else if (rv)
1866                                 continue;
1867                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1868                         if (rv < 0)
1869                                 goto out;
1870                         else if (rv)
1871                                 continue;
1872                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1873                         if (rv < 0)
1874                                 goto out;
1875                         else if (rv)
1876                                 continue;
1877 
1878                         rv = -EINVAL;
1879                         printk(KERN_WARNING PFX
1880                                "Invalid hotmod option '%s'\n",
1881                                curr);
1882                         goto out;
1883                 }
1884 
1885                 if (op == HM_ADD) {
1886                         info = smi_info_alloc();
1887                         if (!info) {
1888                                 rv = -ENOMEM;
1889                                 goto out;
1890                         }
1891 
1892                         info->addr_source = SI_HOTMOD;
1893                         info->si_type = si_type;
1894                         info->io.addr_data = addr;
1895                         info->io.addr_type = addr_space;
1896                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1897                                 info->io_setup = mem_setup;
1898                         else
1899                                 info->io_setup = port_setup;
1900 
1901                         info->io.addr = NULL;
1902                         info->io.regspacing = regspacing;
1903                         if (!info->io.regspacing)
1904                                 info->io.regspacing = DEFAULT_REGSPACING;
1905                         info->io.regsize = regsize;
1906                         if (!info->io.regsize)
1907                                 info->io.regsize = DEFAULT_REGSPACING;
1908                         info->io.regshift = regshift;
1909                         info->irq = irq;
1910                         if (info->irq)
1911                                 info->irq_setup = std_irq_setup;
1912                         info->slave_addr = ipmb;
1913 
1914                         rv = add_smi(info);
1915                         if (rv) {
1916                                 kfree(info);
1917                                 goto out;
1918                         }
1919                         rv = try_smi_init(info);
1920                         if (rv) {
1921                                 cleanup_one_si(info);
1922                                 goto out;
1923                         }
1924                 } else {
1925                         /* remove */
1926                         struct smi_info *e, *tmp_e;
1927 
1928                         mutex_lock(&smi_infos_lock);
1929                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1930                                 if (e->io.addr_type != addr_space)
1931                                         continue;
1932                                 if (e->si_type != si_type)
1933                                         continue;
1934                                 if (e->io.addr_data == addr)
1935                                         cleanup_one_si(e);
1936                         }
1937                         mutex_unlock(&smi_infos_lock);
1938                 }
1939         }
1940         rv = len;
1941  out:
1942         kfree(str);
1943         return rv;
1944 }
1945 
1946 static int hardcode_find_bmc(void)
1947 {
1948         int ret = -ENODEV;
1949         int             i;
1950         struct smi_info *info;
1951 
1952         for (i = 0; i < SI_MAX_PARMS; i++) {
1953                 if (!ports[i] && !addrs[i])
1954                         continue;
1955 
1956                 info = smi_info_alloc();
1957                 if (!info)
1958                         return -ENOMEM;
1959 
1960                 info->addr_source = SI_HARDCODED;
1961                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1962 
1963                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1964                         info->si_type = SI_KCS;
1965                 } else if (strcmp(si_type[i], "smic") == 0) {
1966                         info->si_type = SI_SMIC;
1967                 } else if (strcmp(si_type[i], "bt") == 0) {
1968                         info->si_type = SI_BT;
1969                 } else {
1970                         printk(KERN_WARNING PFX "Interface type specified "
1971                                "for interface %d, was invalid: %s\n",
1972                                i, si_type[i]);
1973                         kfree(info);
1974                         continue;
1975                 }
1976 
1977                 if (ports[i]) {
1978                         /* An I/O port */
1979                         info->io_setup = port_setup;
1980                         info->io.addr_data = ports[i];
1981                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1982                 } else if (addrs[i]) {
1983                         /* A memory port */
1984                         info->io_setup = mem_setup;
1985                         info->io.addr_data = addrs[i];
1986                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1987                 } else {
1988                         printk(KERN_WARNING PFX "Interface type specified "
1989                                "for interface %d, but port and address were "
1990                                "not set or set to zero.\n", i);
1991                         kfree(info);
1992                         continue;
1993                 }
1994 
1995                 info->io.addr = NULL;
1996                 info->io.regspacing = regspacings[i];
1997                 if (!info->io.regspacing)
1998                         info->io.regspacing = DEFAULT_REGSPACING;
1999                 info->io.regsize = regsizes[i];
2000                 if (!info->io.regsize)
2001                         info->io.regsize = DEFAULT_REGSPACING;
2002                 info->io.regshift = regshifts[i];
2003                 info->irq = irqs[i];
2004                 if (info->irq)
2005                         info->irq_setup = std_irq_setup;
2006                 info->slave_addr = slave_addrs[i];
2007 
2008                 if (!add_smi(info)) {
2009                         if (try_smi_init(info))
2010                                 cleanup_one_si(info);
2011                         ret = 0;
2012                 } else {
2013                         kfree(info);
2014                 }
2015         }
2016         return ret;
2017 }
2018 
2019 #ifdef CONFIG_ACPI
2020 
2021 #include <linux/acpi.h>
2022 
2023 /*
2024  * Once we get an ACPI failure, we don't try any more, because we go
2025  * through the tables sequentially.  Once we don't find a table, there
2026  * are no more.
2027  */
2028 static int acpi_failure;
2029 
2030 /* For GPE-type interrupts. */
2031 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2032         u32 gpe_number, void *context)
2033 {
2034         struct smi_info *smi_info = context;
2035         unsigned long   flags;
2036 
2037         spin_lock_irqsave(&(smi_info->si_lock), flags);
2038 
2039         smi_inc_stat(smi_info, interrupts);
2040 
2041         debug_timestamp("ACPI_GPE");
2042 
2043         smi_event_handler(smi_info, 0);
2044         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2045 
2046         return ACPI_INTERRUPT_HANDLED;
2047 }
2048 
2049 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2050 {
2051         if (!info->irq)
2052                 return;
2053 
2054         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2055 }
2056 
2057 static int acpi_gpe_irq_setup(struct smi_info *info)
2058 {
2059         acpi_status status;
2060 
2061         if (!info->irq)
2062                 return 0;
2063 
2064         status = acpi_install_gpe_handler(NULL,
2065                                           info->irq,
2066                                           ACPI_GPE_LEVEL_TRIGGERED,
2067                                           &ipmi_acpi_gpe,
2068                                           info);
2069         if (status != AE_OK) {
2070                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2071                          " running polled\n", DEVICE_NAME, info->irq);
2072                 info->irq = 0;
2073                 return -EINVAL;
2074         } else {
2075                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2076                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2077                 return 0;
2078         }
2079 }
2080 
2081 /*
2082  * Defined at
2083  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2084  */
2085 struct SPMITable {
2086         s8      Signature[4];
2087         u32     Length;
2088         u8      Revision;
2089         u8      Checksum;
2090         s8      OEMID[6];
2091         s8      OEMTableID[8];
2092         s8      OEMRevision[4];
2093         s8      CreatorID[4];
2094         s8      CreatorRevision[4];
2095         u8      InterfaceType;
2096         u8      IPMIlegacy;
2097         s16     SpecificationRevision;
2098 
2099         /*
2100          * Bit 0 - SCI interrupt supported
2101          * Bit 1 - I/O APIC/SAPIC
2102          */
2103         u8      InterruptType;
2104 
2105         /*
2106          * If bit 0 of InterruptType is set, then this is the SCI
2107          * interrupt in the GPEx_STS register.
2108          */
2109         u8      GPE;
2110 
2111         s16     Reserved;
2112 
2113         /*
2114          * If bit 1 of InterruptType is set, then this is the I/O
2115          * APIC/SAPIC interrupt.
2116          */
2117         u32     GlobalSystemInterrupt;
2118 
2119         /* The actual register address. */
2120         struct acpi_generic_address addr;
2121 
2122         u8      UID[4];
2123 
2124         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2125 };
2126 
2127 static int try_init_spmi(struct SPMITable *spmi)
2128 {
2129         struct smi_info  *info;
2130         int rv;
2131 
2132         if (spmi->IPMIlegacy != 1) {
2133                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2134                 return -ENODEV;
2135         }
2136 
2137         info = smi_info_alloc();
2138         if (!info) {
2139                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2140                 return -ENOMEM;
2141         }
2142 
2143         info->addr_source = SI_SPMI;
2144         printk(KERN_INFO PFX "probing via SPMI\n");
2145 
2146         /* Figure out the interface type. */
2147         switch (spmi->InterfaceType) {
2148         case 1: /* KCS */
2149                 info->si_type = SI_KCS;
2150                 break;
2151         case 2: /* SMIC */
2152                 info->si_type = SI_SMIC;
2153                 break;
2154         case 3: /* BT */
2155                 info->si_type = SI_BT;
2156                 break;
2157         case 4: /* SSIF, just ignore */
2158                 kfree(info);
2159                 return -EIO;
2160         default:
2161                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2162                        spmi->InterfaceType);
2163                 kfree(info);
2164                 return -EIO;
2165         }
2166 
2167         if (spmi->InterruptType & 1) {
2168                 /* We've got a GPE interrupt. */
2169                 info->irq = spmi->GPE;
2170                 info->irq_setup = acpi_gpe_irq_setup;
2171         } else if (spmi->InterruptType & 2) {
2172                 /* We've got an APIC/SAPIC interrupt. */
2173                 info->irq = spmi->GlobalSystemInterrupt;
2174                 info->irq_setup = std_irq_setup;
2175         } else {
2176                 /* Use the default interrupt setting. */
2177                 info->irq = 0;
2178                 info->irq_setup = NULL;
2179         }
2180 
2181         if (spmi->addr.bit_width) {
2182                 /* A (hopefully) properly formed register bit width. */
2183                 info->io.regspacing = spmi->addr.bit_width / 8;
2184         } else {
2185                 info->io.regspacing = DEFAULT_REGSPACING;
2186         }
2187         info->io.regsize = info->io.regspacing;
2188         info->io.regshift = spmi->addr.bit_offset;
2189 
2190         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2191                 info->io_setup = mem_setup;
2192                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2193         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2194                 info->io_setup = port_setup;
2195                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2196         } else {
2197                 kfree(info);
2198                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2199                 return -EIO;
2200         }
2201         info->io.addr_data = spmi->addr.address;
2202 
2203         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2204                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2205                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2206                  info->irq);
2207 
2208         rv = add_smi(info);
2209         if (rv)
2210                 kfree(info);
2211 
2212         return rv;
2213 }
2214 
2215 static void spmi_find_bmc(void)
2216 {
2217         acpi_status      status;
2218         struct SPMITable *spmi;
2219         int              i;
2220 
2221         if (acpi_disabled)
2222                 return;
2223 
2224         if (acpi_failure)
2225                 return;
2226 
2227         for (i = 0; ; i++) {
2228                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2229                                         (struct acpi_table_header **)&spmi);
2230                 if (status != AE_OK)
2231                         return;
2232 
2233                 try_init_spmi(spmi);
2234         }
2235 }
2236 
2237 static int ipmi_pnp_probe(struct pnp_dev *dev,
2238                                     const struct pnp_device_id *dev_id)
2239 {
2240         struct acpi_device *acpi_dev;
2241         struct smi_info *info;
2242         struct resource *res, *res_second;
2243         acpi_handle handle;
2244         acpi_status status;
2245         unsigned long long tmp;
2246         int rv = -EINVAL;
2247 
2248         acpi_dev = pnp_acpi_device(dev);
2249         if (!acpi_dev)
2250                 return -ENODEV;
2251 
2252         info = smi_info_alloc();
2253         if (!info)
2254                 return -ENOMEM;
2255 
2256         info->addr_source = SI_ACPI;
2257         printk(KERN_INFO PFX "probing via ACPI\n");
2258 
2259         handle = acpi_dev->handle;
2260         info->addr_info.acpi_info.acpi_handle = handle;
2261 
2262         /* _IFT tells us the interface type: KCS, BT, etc */
2263         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2264         if (ACPI_FAILURE(status)) {
2265                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2266                 goto err_free;
2267         }
2268 
2269         switch (tmp) {
2270         case 1:
2271                 info->si_type = SI_KCS;
2272                 break;
2273         case 2:
2274                 info->si_type = SI_SMIC;
2275                 break;
2276         case 3:
2277                 info->si_type = SI_BT;
2278                 break;
2279         case 4: /* SSIF, just ignore */
2280                 rv = -ENODEV;
2281                 goto err_free;
2282         default:
2283                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2284                 goto err_free;
2285         }
2286 
2287         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2288         if (res) {
2289                 info->io_setup = port_setup;
2290                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2291         } else {
2292                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2293                 if (res) {
2294                         info->io_setup = mem_setup;
2295                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2296                 }
2297         }
2298         if (!res) {
2299                 dev_err(&dev->dev, "no I/O or memory address\n");
2300                 goto err_free;
2301         }
2302         info->io.addr_data = res->start;
2303 
2304         info->io.regspacing = DEFAULT_REGSPACING;
2305         res_second = pnp_get_resource(dev,
2306                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2307                                         IORESOURCE_IO : IORESOURCE_MEM,
2308                                1);
2309         if (res_second) {
2310                 if (res_second->start > info->io.addr_data)
2311                         info->io.regspacing = res_second->start - info->io.addr_data;
2312         }
2313         info->io.regsize = DEFAULT_REGSPACING;
2314         info->io.regshift = 0;
2315 
2316         /* If _GPE exists, use it; otherwise use standard interrupts */
2317         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2318         if (ACPI_SUCCESS(status)) {
2319                 info->irq = tmp;
2320                 info->irq_setup = acpi_gpe_irq_setup;
2321         } else if (pnp_irq_valid(dev, 0)) {
2322                 info->irq = pnp_irq(dev, 0);
2323                 info->irq_setup = std_irq_setup;
2324         }
2325 
2326         info->dev = &dev->dev;
2327         pnp_set_drvdata(dev, info);
2328 
2329         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2330                  res, info->io.regsize, info->io.regspacing,
2331                  info->irq);
2332 
2333         rv = add_smi(info);
2334         if (rv)
2335                 kfree(info);
2336 
2337         return rv;
2338 
2339 err_free:
2340         kfree(info);
2341         return rv;
2342 }
2343 
2344 static void ipmi_pnp_remove(struct pnp_dev *dev)
2345 {
2346         struct smi_info *info = pnp_get_drvdata(dev);
2347 
2348         cleanup_one_si(info);
2349 }
2350 
2351 static const struct pnp_device_id pnp_dev_table[] = {
2352         {"IPI0001", 0},
2353         {"", 0},
2354 };
2355 
2356 static struct pnp_driver ipmi_pnp_driver = {
2357         .name           = DEVICE_NAME,
2358         .probe          = ipmi_pnp_probe,
2359         .remove         = ipmi_pnp_remove,
2360         .id_table       = pnp_dev_table,
2361 };
2362 
2363 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2364 #endif
2365 
2366 #ifdef CONFIG_DMI
2367 struct dmi_ipmi_data {
2368         u8              type;
2369         u8              addr_space;
2370         unsigned long   base_addr;
2371         u8              irq;
2372         u8              offset;
2373         u8              slave_addr;
2374 };
2375 
2376 static int decode_dmi(const struct dmi_header *dm,
2377                                 struct dmi_ipmi_data *dmi)
2378 {
2379         const u8        *data = (const u8 *)dm;
2380         unsigned long   base_addr;
2381         u8              reg_spacing;
2382         u8              len = dm->length;
2383 
2384         dmi->type = data[4];
2385 
2386         memcpy(&base_addr, data+8, sizeof(unsigned long));
2387         if (len >= 0x11) {
2388                 if (base_addr & 1) {
2389                         /* I/O */
2390                         base_addr &= 0xFFFE;
2391                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2392                 } else
2393                         /* Memory */
2394                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2395 
2396                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2397                    is odd. */
2398                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2399 
2400                 dmi->irq = data[0x11];
2401 
2402                 /* The top two bits of byte 0x10 hold the register spacing. */
2403                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2404                 switch (reg_spacing) {
2405                 case 0x00: /* Byte boundaries */
2406                     dmi->offset = 1;
2407                     break;
2408                 case 0x01: /* 32-bit boundaries */
2409                     dmi->offset = 4;
2410                     break;
2411                 case 0x02: /* 16-byte boundaries */
2412                     dmi->offset = 16;
2413                     break;
2414                 default:
2415                     /* Some other interface, just ignore it. */
2416                     return -EIO;
2417                 }
2418         } else {
2419                 /* Old DMI spec. */
2420                 /*
2421                  * Note that technically, the lower bit of the base
2422                  * address should be 1 if the address is I/O and 0 if
2423                  * the address is in memory.  So many systems get that
2424                  * wrong (and all that I have seen are I/O) so we just
2425                  * ignore that bit and assume I/O.  Systems that use
2426                  * memory should use the newer spec, anyway.
2427                  */
2428                 dmi->base_addr = base_addr & 0xfffe;
2429                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2430                 dmi->offset = 1;
2431         }
2432 
2433         dmi->slave_addr = data[6];
2434 
2435         return 0;
2436 }
2437 
2438 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2439 {
2440         struct smi_info *info;
2441 
2442         info = smi_info_alloc();
2443         if (!info) {
2444                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2445                 return;
2446         }
2447 
2448         info->addr_source = SI_SMBIOS;
2449         printk(KERN_INFO PFX "probing via SMBIOS\n");
2450 
2451         switch (ipmi_data->type) {
2452         case 0x01: /* KCS */
2453                 info->si_type = SI_KCS;
2454                 break;
2455         case 0x02: /* SMIC */
2456                 info->si_type = SI_SMIC;
2457                 break;
2458         case 0x03: /* BT */
2459                 info->si_type = SI_BT;
2460                 break;
2461         default:
2462                 kfree(info);
2463                 return;
2464         }
2465 
2466         switch (ipmi_data->addr_space) {
2467         case IPMI_MEM_ADDR_SPACE:
2468                 info->io_setup = mem_setup;
2469                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2470                 break;
2471 
2472         case IPMI_IO_ADDR_SPACE:
2473                 info->io_setup = port_setup;
2474                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2475                 break;
2476 
2477         default:
2478                 kfree(info);
2479                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2480                        ipmi_data->addr_space);
2481                 return;
2482         }
2483         info->io.addr_data = ipmi_data->base_addr;
2484 
2485         info->io.regspacing = ipmi_data->offset;
2486         if (!info->io.regspacing)
2487                 info->io.regspacing = DEFAULT_REGSPACING;
2488         info->io.regsize = DEFAULT_REGSPACING;
2489         info->io.regshift = 0;
2490 
2491         info->slave_addr = ipmi_data->slave_addr;
2492 
2493         info->irq = ipmi_data->irq;
2494         if (info->irq)
2495                 info->irq_setup = std_irq_setup;
2496 
2497         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2498                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2499                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2500                  info->irq);
2501 
2502         if (add_smi(info))
2503                 kfree(info);
2504 }
2505 
2506 static void dmi_find_bmc(void)
2507 {
2508         const struct dmi_device *dev = NULL;
2509         struct dmi_ipmi_data data;
2510         int                  rv;
2511 
2512         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2513                 memset(&data, 0, sizeof(data));
2514                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2515                                 &data);
2516                 if (!rv)
2517                         try_init_dmi(&data);
2518         }
2519 }
2520 #endif /* CONFIG_DMI */
2521 
2522 #ifdef CONFIG_PCI
2523 
2524 #define PCI_ERMC_CLASSCODE              0x0C0700
2525 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2526 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2527 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2528 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2529 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2530 
2531 #define PCI_HP_VENDOR_ID    0x103C
2532 #define PCI_MMC_DEVICE_ID   0x121A
2533 #define PCI_MMC_ADDR_CW     0x10
2534 
2535 static void ipmi_pci_cleanup(struct smi_info *info)
2536 {
2537         struct pci_dev *pdev = info->addr_source_data;
2538 
2539         pci_disable_device(pdev);
2540 }
2541 
2542 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2543 {
2544         if (info->si_type == SI_KCS) {
2545                 unsigned char   status;
2546                 int             regspacing;
2547 
2548                 info->io.regsize = DEFAULT_REGSIZE;
2549                 info->io.regshift = 0;
2550                 info->io_size = 2;
2551                 info->handlers = &kcs_smi_handlers;
2552 
2553                 /* detect 1, 4, 16byte spacing */
2554                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2555                         info->io.regspacing = regspacing;
2556                         if (info->io_setup(info)) {
2557                                 dev_err(info->dev,
2558                                         "Could not setup I/O space\n");
2559                                 return DEFAULT_REGSPACING;
2560                         }
2561                         /* write invalid cmd */
2562                         info->io.outputb(&info->io, 1, 0x10);
2563                         /* read status back */
2564                         status = info->io.inputb(&info->io, 1);
2565                         info->io_cleanup(info);
2566                         if (status)
2567                                 return regspacing;
2568                         regspacing *= 4;
2569                 }
2570         }
2571         return DEFAULT_REGSPACING;
2572 }
2573 
2574 static int ipmi_pci_probe(struct pci_dev *pdev,
2575                                     const struct pci_device_id *ent)
2576 {
2577         int rv;
2578         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2579         struct smi_info *info;
2580 
2581         info = smi_info_alloc();
2582         if (!info)
2583                 return -ENOMEM;
2584 
2585         info->addr_source = SI_PCI;
2586         dev_info(&pdev->dev, "probing via PCI");
2587 
2588         switch (class_type) {
2589         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2590                 info->si_type = SI_SMIC;
2591                 break;
2592 
2593         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2594                 info->si_type = SI_KCS;
2595                 break;
2596 
2597         case PCI_ERMC_CLASSCODE_TYPE_BT:
2598                 info->si_type = SI_BT;
2599                 break;
2600 
2601         default:
2602                 kfree(info);
2603                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2604                 return -ENOMEM;
2605         }
2606 
2607         rv = pci_enable_device(pdev);
2608         if (rv) {
2609                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2610                 kfree(info);
2611                 return rv;
2612         }
2613 
2614         info->addr_source_cleanup = ipmi_pci_cleanup;
2615         info->addr_source_data = pdev;
2616 
2617         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2618                 info->io_setup = port_setup;
2619                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2620         } else {
2621                 info->io_setup = mem_setup;
2622                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2623         }
2624         info->io.addr_data = pci_resource_start(pdev, 0);
2625 
2626         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2627         info->io.regsize = DEFAULT_REGSIZE;
2628         info->io.regshift = 0;
2629 
2630         info->irq = pdev->irq;
2631         if (info->irq)
2632                 info->irq_setup = std_irq_setup;
2633 
2634         info->dev = &pdev->dev;
2635         pci_set_drvdata(pdev, info);
2636 
2637         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2638                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2639                 info->irq);
2640 
2641         rv = add_smi(info);
2642         if (rv) {
2643                 kfree(info);
2644                 pci_disable_device(pdev);
2645         }
2646 
2647         return rv;
2648 }
2649 
2650 static void ipmi_pci_remove(struct pci_dev *pdev)
2651 {
2652         struct smi_info *info = pci_get_drvdata(pdev);
2653         cleanup_one_si(info);
2654         pci_disable_device(pdev);
2655 }
2656 
2657 static struct pci_device_id ipmi_pci_devices[] = {
2658         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2659         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2660         { 0, }
2661 };
2662 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2663 
2664 static struct pci_driver ipmi_pci_driver = {
2665         .name =         DEVICE_NAME,
2666         .id_table =     ipmi_pci_devices,
2667         .probe =        ipmi_pci_probe,
2668         .remove =       ipmi_pci_remove,
2669 };
2670 #endif /* CONFIG_PCI */
2671 
2672 static const struct of_device_id ipmi_match[];
2673 static int ipmi_probe(struct platform_device *dev)
2674 {
2675 #ifdef CONFIG_OF
2676         const struct of_device_id *match;
2677         struct smi_info *info;
2678         struct resource resource;
2679         const __be32 *regsize, *regspacing, *regshift;
2680         struct device_node *np = dev->dev.of_node;
2681         int ret;
2682         int proplen;
2683 
2684         dev_info(&dev->dev, "probing via device tree\n");
2685 
2686         match = of_match_device(ipmi_match, &dev->dev);
2687         if (!match)
2688                 return -EINVAL;
2689 
2690         if (!of_device_is_available(np))
2691                 return -EINVAL;
2692 
2693         ret = of_address_to_resource(np, 0, &resource);
2694         if (ret) {
2695                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2696                 return ret;
2697         }
2698 
2699         regsize = of_get_property(np, "reg-size", &proplen);
2700         if (regsize && proplen != 4) {
2701                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2702                 return -EINVAL;
2703         }
2704 
2705         regspacing = of_get_property(np, "reg-spacing", &proplen);
2706         if (regspacing && proplen != 4) {
2707                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2708                 return -EINVAL;
2709         }
2710 
2711         regshift = of_get_property(np, "reg-shift", &proplen);
2712         if (regshift && proplen != 4) {
2713                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2714                 return -EINVAL;
2715         }
2716 
2717         info = smi_info_alloc();
2718 
2719         if (!info) {
2720                 dev_err(&dev->dev,
2721                         "could not allocate memory for OF probe\n");
2722                 return -ENOMEM;
2723         }
2724 
2725         info->si_type           = (enum si_type) match->data;
2726         info->addr_source       = SI_DEVICETREE;
2727         info->irq_setup         = std_irq_setup;
2728 
2729         if (resource.flags & IORESOURCE_IO) {
2730                 info->io_setup          = port_setup;
2731                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2732         } else {
2733                 info->io_setup          = mem_setup;
2734                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2735         }
2736 
2737         info->io.addr_data      = resource.start;
2738 
2739         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2740         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2741         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2742 
2743         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2744         info->dev               = &dev->dev;
2745 
2746         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2747                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2748                 info->irq);
2749 
2750         dev_set_drvdata(&dev->dev, info);
2751 
2752         ret = add_smi(info);
2753         if (ret) {
2754                 kfree(info);
2755                 return ret;
2756         }
2757 #endif
2758         return 0;
2759 }
2760 
2761 static int ipmi_remove(struct platform_device *dev)
2762 {
2763 #ifdef CONFIG_OF
2764         cleanup_one_si(dev_get_drvdata(&dev->dev));
2765 #endif
2766         return 0;
2767 }
2768 
2769 static const struct of_device_id ipmi_match[] =
2770 {
2771         { .type = "ipmi", .compatible = "ipmi-kcs",
2772           .data = (void *)(unsigned long) SI_KCS },
2773         { .type = "ipmi", .compatible = "ipmi-smic",
2774           .data = (void *)(unsigned long) SI_SMIC },
2775         { .type = "ipmi", .compatible = "ipmi-bt",
2776           .data = (void *)(unsigned long) SI_BT },
2777         {},
2778 };
2779 
2780 static struct platform_driver ipmi_driver = {
2781         .driver = {
2782                 .name = DEVICE_NAME,
2783                 .of_match_table = ipmi_match,
2784         },
2785         .probe          = ipmi_probe,
2786         .remove         = ipmi_remove,
2787 };
2788 
2789 #ifdef CONFIG_PARISC
2790 static int ipmi_parisc_probe(struct parisc_device *dev)
2791 {
2792         struct smi_info *info;
2793         int rv;
2794 
2795         info = smi_info_alloc();
2796 
2797         if (!info) {
2798                 dev_err(&dev->dev,
2799                         "could not allocate memory for PARISC probe\n");
2800                 return -ENOMEM;
2801         }
2802 
2803         info->si_type           = SI_KCS;
2804         info->addr_source       = SI_DEVICETREE;
2805         info->io_setup          = mem_setup;
2806         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2807         info->io.addr_data      = dev->hpa.start;
2808         info->io.regsize        = 1;
2809         info->io.regspacing     = 1;
2810         info->io.regshift       = 0;
2811         info->irq               = 0; /* no interrupt */
2812         info->irq_setup         = NULL;
2813         info->dev               = &dev->dev;
2814 
2815         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2816 
2817         dev_set_drvdata(&dev->dev, info);
2818 
2819         rv = add_smi(info);
2820         if (rv) {
2821                 kfree(info);
2822                 return rv;
2823         }
2824 
2825         return 0;
2826 }
2827 
2828 static int ipmi_parisc_remove(struct parisc_device *dev)
2829 {
2830         cleanup_one_si(dev_get_drvdata(&dev->dev));
2831         return 0;
2832 }
2833 
2834 static struct parisc_device_id ipmi_parisc_tbl[] = {
2835         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2836         { 0, }
2837 };
2838 
2839 static struct parisc_driver ipmi_parisc_driver = {
2840         .name =         "ipmi",
2841         .id_table =     ipmi_parisc_tbl,
2842         .probe =        ipmi_parisc_probe,
2843         .remove =       ipmi_parisc_remove,
2844 };
2845 #endif /* CONFIG_PARISC */
2846 
2847 static int wait_for_msg_done(struct smi_info *smi_info)
2848 {
2849         enum si_sm_result     smi_result;
2850 
2851         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2852         for (;;) {
2853                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2854                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2855                         schedule_timeout_uninterruptible(1);
2856                         smi_result = smi_info->handlers->event(
2857                                 smi_info->si_sm, jiffies_to_usecs(1));
2858                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2859                         smi_result = smi_info->handlers->event(
2860                                 smi_info->si_sm, 0);
2861                 } else
2862                         break;
2863         }
2864         if (smi_result == SI_SM_HOSED)
2865                 /*
2866                  * We couldn't get the state machine to run, so whatever's at
2867                  * the port is probably not an IPMI SMI interface.
2868                  */
2869                 return -ENODEV;
2870 
2871         return 0;
2872 }
2873 
2874 static int try_get_dev_id(struct smi_info *smi_info)
2875 {
2876         unsigned char         msg[2];
2877         unsigned char         *resp;
2878         unsigned long         resp_len;
2879         int                   rv = 0;
2880 
2881         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2882         if (!resp)
2883                 return -ENOMEM;
2884 
2885         /*
2886          * Do a Get Device ID command, since it comes back with some
2887          * useful info.
2888          */
2889         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2890         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2891         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2892 
2893         rv = wait_for_msg_done(smi_info);
2894         if (rv)
2895                 goto out;
2896 
2897         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2898                                                   resp, IPMI_MAX_MSG_LENGTH);
2899 
2900         /* Check and record info from the get device id, in case we need it. */
2901         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2902 
2903  out:
2904         kfree(resp);
2905         return rv;
2906 }
2907 
2908 /*
2909  * Some BMCs do not support clearing the receive irq bit in the global
2910  * enables (even if they don't support interrupts on the BMC).  Check
2911  * for this and handle it properly.
2912  */
2913 static void check_clr_rcv_irq(struct smi_info *smi_info)
2914 {
2915         unsigned char         msg[3];
2916         unsigned char         *resp;
2917         unsigned long         resp_len;
2918         int                   rv;
2919 
2920         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2921         if (!resp) {
2922                 printk(KERN_WARNING PFX "Out of memory allocating response for"
2923                        " global enables command, cannot check recv irq bit"
2924                        " handling.\n");
2925                 return;
2926         }
2927 
2928         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2929         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2930         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2931 
2932         rv = wait_for_msg_done(smi_info);
2933         if (rv) {
2934                 printk(KERN_WARNING PFX "Error getting response from get"
2935                        " global enables command, cannot check recv irq bit"
2936                        " handling.\n");
2937                 goto out;
2938         }
2939 
2940         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2941                                                   resp, IPMI_MAX_MSG_LENGTH);
2942 
2943         if (resp_len < 4 ||
2944                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2945                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2946                         resp[2] != 0) {
2947                 printk(KERN_WARNING PFX "Invalid return from get global"
2948                        " enables command, cannot check recv irq bit"
2949                        " handling.\n");
2950                 rv = -EINVAL;
2951                 goto out;
2952         }
2953 
2954         if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0)
2955                 /* Already clear, should work ok. */
2956                 goto out;
2957 
2958         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2959         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2960         msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR;
2961         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2962 
2963         rv = wait_for_msg_done(smi_info);
2964         if (rv) {
2965                 printk(KERN_WARNING PFX "Error getting response from set"
2966                        " global enables command, cannot check recv irq bit"
2967                        " handling.\n");
2968                 goto out;
2969         }
2970 
2971         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2972                                                   resp, IPMI_MAX_MSG_LENGTH);
2973 
2974         if (resp_len < 3 ||
2975                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2976                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2977                 printk(KERN_WARNING PFX "Invalid return from get global"
2978                        " enables command, cannot check recv irq bit"
2979                        " handling.\n");
2980                 rv = -EINVAL;
2981                 goto out;
2982         }
2983 
2984         if (resp[2] != 0) {
2985                 /*
2986                  * An error when setting the event buffer bit means
2987                  * clearing the bit is not supported.
2988                  */
2989                 printk(KERN_WARNING PFX "The BMC does not support clearing"
2990                        " the recv irq bit, compensating, but the BMC needs to"
2991                        " be fixed.\n");
2992                 smi_info->cannot_clear_recv_irq_bit = true;
2993         }
2994  out:
2995         kfree(resp);
2996 }
2997 
2998 static int try_enable_event_buffer(struct smi_info *smi_info)
2999 {
3000         unsigned char         msg[3];
3001         unsigned char         *resp;
3002         unsigned long         resp_len;
3003         int                   rv = 0;
3004 
3005         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3006         if (!resp)
3007                 return -ENOMEM;
3008 
3009         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3010         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3011         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3012 
3013         rv = wait_for_msg_done(smi_info);
3014         if (rv) {
3015                 printk(KERN_WARNING PFX "Error getting response from get"
3016                        " global enables command, the event buffer is not"
3017                        " enabled.\n");
3018                 goto out;
3019         }
3020 
3021         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3022                                                   resp, IPMI_MAX_MSG_LENGTH);
3023 
3024         if (resp_len < 4 ||
3025                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3026                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3027                         resp[2] != 0) {
3028                 printk(KERN_WARNING PFX "Invalid return from get global"
3029                        " enables command, cannot enable the event buffer.\n");
3030                 rv = -EINVAL;
3031                 goto out;
3032         }
3033 
3034         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3035                 /* buffer is already enabled, nothing to do. */
3036                 smi_info->supports_event_msg_buff = true;
3037                 goto out;
3038         }
3039 
3040         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3041         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3042         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3043         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3044 
3045         rv = wait_for_msg_done(smi_info);
3046         if (rv) {
3047                 printk(KERN_WARNING PFX "Error getting response from set"
3048                        " global, enables command, the event buffer is not"
3049                        " enabled.\n");
3050                 goto out;
3051         }
3052 
3053         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3054                                                   resp, IPMI_MAX_MSG_LENGTH);
3055 
3056         if (resp_len < 3 ||
3057                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3058                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3059                 printk(KERN_WARNING PFX "Invalid return from get global,"
3060                        "enables command, not enable the event buffer.\n");
3061                 rv = -EINVAL;
3062                 goto out;
3063         }
3064 
3065         if (resp[2] != 0)
3066                 /*
3067                  * An error when setting the event buffer bit means
3068                  * that the event buffer is not supported.
3069                  */
3070                 rv = -ENOENT;
3071         else
3072                 smi_info->supports_event_msg_buff = true;
3073 
3074  out:
3075         kfree(resp);
3076         return rv;
3077 }
3078 
3079 static int smi_type_proc_show(struct seq_file *m, void *v)
3080 {
3081         struct smi_info *smi = m->private;
3082 
3083         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3084 
3085         return 0;
3086 }
3087 
3088 static int smi_type_proc_open(struct inode *inode, struct file *file)
3089 {
3090         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3091 }
3092 
3093 static const struct file_operations smi_type_proc_ops = {
3094         .open           = smi_type_proc_open,
3095         .read           = seq_read,
3096         .llseek         = seq_lseek,
3097         .release        = single_release,
3098 };
3099 
3100 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3101 {
3102         struct smi_info *smi = m->private;
3103 
3104         seq_printf(m, "interrupts_enabled:    %d\n",
3105                        smi->irq && !smi->interrupt_disabled);
3106         seq_printf(m, "short_timeouts:        %u\n",
3107                        smi_get_stat(smi, short_timeouts));
3108         seq_printf(m, "long_timeouts:         %u\n",
3109                        smi_get_stat(smi, long_timeouts));
3110         seq_printf(m, "idles:                 %u\n",
3111                        smi_get_stat(smi, idles));
3112         seq_printf(m, "interrupts:            %u\n",
3113                        smi_get_stat(smi, interrupts));
3114         seq_printf(m, "attentions:            %u\n",
3115                        smi_get_stat(smi, attentions));
3116         seq_printf(m, "flag_fetches:          %u\n",
3117                        smi_get_stat(smi, flag_fetches));
3118         seq_printf(m, "hosed_count:           %u\n",
3119                        smi_get_stat(smi, hosed_count));
3120         seq_printf(m, "complete_transactions: %u\n",
3121                        smi_get_stat(smi, complete_transactions));
3122         seq_printf(m, "events:                %u\n",
3123                        smi_get_stat(smi, events));
3124         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3125                        smi_get_stat(smi, watchdog_pretimeouts));
3126         seq_printf(m, "incoming_messages:     %u\n",
3127                        smi_get_stat(smi, incoming_messages));
3128         return 0;
3129 }
3130 
3131 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3132 {
3133         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3134 }
3135 
3136 static const struct file_operations smi_si_stats_proc_ops = {
3137         .open           = smi_si_stats_proc_open,
3138         .read           = seq_read,
3139         .llseek         = seq_lseek,
3140         .release        = single_release,
3141 };
3142 
3143 static int smi_params_proc_show(struct seq_file *m, void *v)
3144 {
3145         struct smi_info *smi = m->private;
3146 
3147         seq_printf(m,
3148                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3149                    si_to_str[smi->si_type],
3150                    addr_space_to_str[smi->io.addr_type],
3151                    smi->io.addr_data,
3152                    smi->io.regspacing,
3153                    smi->io.regsize,
3154                    smi->io.regshift,
3155                    smi->irq,
3156                    smi->slave_addr);
3157 
3158         return 0;
3159 }
3160 
3161 static int smi_params_proc_open(struct inode *inode, struct file *file)
3162 {
3163         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3164 }
3165 
3166 static const struct file_operations smi_params_proc_ops = {
3167         .open           = smi_params_proc_open,
3168         .read           = seq_read,
3169         .llseek         = seq_lseek,
3170         .release        = single_release,
3171 };
3172 
3173 /*
3174  * oem_data_avail_to_receive_msg_avail
3175  * @info - smi_info structure with msg_flags set
3176  *
3177  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3178  * Returns 1 indicating need to re-run handle_flags().
3179  */
3180 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3181 {
3182         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3183                                RECEIVE_MSG_AVAIL);
3184         return 1;
3185 }
3186 
3187 /*
3188  * setup_dell_poweredge_oem_data_handler
3189  * @info - smi_info.device_id must be populated
3190  *
3191  * Systems that match, but have firmware version < 1.40 may assert
3192  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3193  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3194  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3195  * as RECEIVE_MSG_AVAIL instead.
3196  *
3197  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3198  * assert the OEM[012] bits, and if it did, the driver would have to
3199  * change to handle that properly, we don't actually check for the
3200  * firmware version.
3201  * Device ID = 0x20                BMC on PowerEdge 8G servers
3202  * Device Revision = 0x80
3203  * Firmware Revision1 = 0x01       BMC version 1.40
3204  * Firmware Revision2 = 0x40       BCD encoded
3205  * IPMI Version = 0x51             IPMI 1.5
3206  * Manufacturer ID = A2 02 00      Dell IANA
3207  *
3208  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3209  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3210  *
3211  */
3212 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3213 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3214 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3215 #define DELL_IANA_MFR_ID 0x0002a2
3216 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3217 {
3218         struct ipmi_device_id *id = &smi_info->device_id;
3219         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3220                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3221                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3222                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3223                         smi_info->oem_data_avail_handler =
3224                                 oem_data_avail_to_receive_msg_avail;
3225                 } else if (ipmi_version_major(id) < 1 ||
3226                            (ipmi_version_major(id) == 1 &&
3227                             ipmi_version_minor(id) < 5)) {
3228                         smi_info->oem_data_avail_handler =
3229                                 oem_data_avail_to_receive_msg_avail;
3230                 }
3231         }
3232 }
3233 
3234 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3235 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3236 {
3237         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3238 
3239         /* Make it a response */
3240         msg->rsp[0] = msg->data[0] | 4;
3241         msg->rsp[1] = msg->data[1];
3242         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3243         msg->rsp_size = 3;
3244         smi_info->curr_msg = NULL;
3245         deliver_recv_msg(smi_info, msg);
3246 }
3247 
3248 /*
3249  * dell_poweredge_bt_xaction_handler
3250  * @info - smi_info.device_id must be populated
3251  *
3252  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3253  * not respond to a Get SDR command if the length of the data
3254  * requested is exactly 0x3A, which leads to command timeouts and no
3255  * data returned.  This intercepts such commands, and causes userspace
3256  * callers to try again with a different-sized buffer, which succeeds.
3257  */
3258 
3259 #define STORAGE_NETFN 0x0A
3260 #define STORAGE_CMD_GET_SDR 0x23
3261 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3262                                              unsigned long unused,
3263                                              void *in)
3264 {
3265         struct smi_info *smi_info = in;
3266         unsigned char *data = smi_info->curr_msg->data;
3267         unsigned int size   = smi_info->curr_msg->data_size;
3268         if (size >= 8 &&
3269             (data[0]>>2) == STORAGE_NETFN &&
3270             data[1] == STORAGE_CMD_GET_SDR &&
3271             data[7] == 0x3A) {
3272                 return_hosed_msg_badsize(smi_info);
3273                 return NOTIFY_STOP;
3274         }
3275         return NOTIFY_DONE;
3276 }
3277 
3278 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3279         .notifier_call  = dell_poweredge_bt_xaction_handler,
3280 };
3281 
3282 /*
3283  * setup_dell_poweredge_bt_xaction_handler
3284  * @info - smi_info.device_id must be filled in already
3285  *
3286  * Fills in smi_info.device_id.start_transaction_pre_hook
3287  * when we know what function to use there.
3288  */
3289 static void
3290 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3291 {
3292         struct ipmi_device_id *id = &smi_info->device_id;
3293         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3294             smi_info->si_type == SI_BT)
3295                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3296 }
3297 
3298 /*
3299  * setup_oem_data_handler
3300  * @info - smi_info.device_id must be filled in already
3301  *
3302  * Fills in smi_info.device_id.oem_data_available_handler
3303  * when we know what function to use there.
3304  */
3305 
3306 static void setup_oem_data_handler(struct smi_info *smi_info)
3307 {
3308         setup_dell_poweredge_oem_data_handler(smi_info);
3309 }
3310 
3311 static void setup_xaction_handlers(struct smi_info *smi_info)
3312 {
3313         setup_dell_poweredge_bt_xaction_handler(smi_info);
3314 }
3315 
3316 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3317 {
3318         if (smi_info->thread != NULL)
3319                 kthread_stop(smi_info->thread);
3320         if (smi_info->timer_running)
3321                 del_timer_sync(&smi_info->si_timer);
3322 }
3323 
3324 static struct ipmi_default_vals
3325 {
3326         int type;
3327         int port;
3328 } ipmi_defaults[] =
3329 {
3330         { .type = SI_KCS, .port = 0xca2 },
3331         { .type = SI_SMIC, .port = 0xca9 },
3332         { .type = SI_BT, .port = 0xe4 },
3333         { .port = 0 }
3334 };
3335 
3336 static void default_find_bmc(void)
3337 {
3338         struct smi_info *info;
3339         int             i;
3340 
3341         for (i = 0; ; i++) {
3342                 if (!ipmi_defaults[i].port)
3343                         break;
3344 #ifdef CONFIG_PPC
3345                 if (check_legacy_ioport(ipmi_defaults[i].port))
3346                         continue;
3347 #endif
3348                 info = smi_info_alloc();
3349                 if (!info)
3350                         return;
3351 
3352                 info->addr_source = SI_DEFAULT;
3353 
3354                 info->si_type = ipmi_defaults[i].type;
3355                 info->io_setup = port_setup;
3356                 info->io.addr_data = ipmi_defaults[i].port;
3357                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3358 
3359                 info->io.addr = NULL;
3360                 info->io.regspacing = DEFAULT_REGSPACING;
3361                 info->io.regsize = DEFAULT_REGSPACING;
3362                 info->io.regshift = 0;
3363 
3364                 if (add_smi(info) == 0) {
3365                         if ((try_smi_init(info)) == 0) {
3366                                 /* Found one... */
3367                                 printk(KERN_INFO PFX "Found default %s"
3368                                 " state machine at %s address 0x%lx\n",
3369                                 si_to_str[info->si_type],
3370                                 addr_space_to_str[info->io.addr_type],
3371                                 info->io.addr_data);
3372                         } else
3373                                 cleanup_one_si(info);
3374                 } else {
3375                         kfree(info);
3376                 }
3377         }
3378 }
3379 
3380 static int is_new_interface(struct smi_info *info)
3381 {
3382         struct smi_info *e;
3383 
3384         list_for_each_entry(e, &smi_infos, link) {
3385                 if (e->io.addr_type != info->io.addr_type)
3386                         continue;
3387                 if (e->io.addr_data == info->io.addr_data)
3388                         return 0;
3389         }
3390 
3391         return 1;
3392 }
3393 
3394 static int add_smi(struct smi_info *new_smi)
3395 {
3396         int rv = 0;
3397 
3398         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3399                ipmi_addr_src_to_str(new_smi->addr_source),
3400                si_to_str[new_smi->si_type]);
3401         mutex_lock(&smi_infos_lock);
3402         if (!is_new_interface(new_smi)) {
3403                 printk(KERN_CONT " duplicate interface\n");
3404                 rv = -EBUSY;
3405                 goto out_err;
3406         }
3407 
3408         printk(KERN_CONT "\n");
3409 
3410         /* So we know not to free it unless we have allocated one. */
3411         new_smi->intf = NULL;
3412         new_smi->si_sm = NULL;
3413         new_smi->handlers = NULL;
3414 
3415         list_add_tail(&new_smi->link, &smi_infos);
3416 
3417 out_err:
3418         mutex_unlock(&smi_infos_lock);
3419         return rv;
3420 }
3421 
3422 static int try_smi_init(struct smi_info *new_smi)
3423 {
3424         int rv = 0;
3425         int i;
3426 
3427         printk(KERN_INFO PFX "Trying %s-specified %s state"
3428                " machine at %s address 0x%lx, slave address 0x%x,"
3429                " irq %d\n",
3430                ipmi_addr_src_to_str(new_smi->addr_source),
3431                si_to_str[new_smi->si_type],
3432                addr_space_to_str[new_smi->io.addr_type],
3433                new_smi->io.addr_data,
3434                new_smi->slave_addr, new_smi->irq);
3435 
3436         switch (new_smi->si_type) {
3437         case SI_KCS:
3438                 new_smi->handlers = &kcs_smi_handlers;
3439                 break;
3440 
3441         case SI_SMIC:
3442                 new_smi->handlers = &smic_smi_handlers;
3443                 break;
3444 
3445         case SI_BT:
3446                 new_smi->handlers = &bt_smi_handlers;
3447                 break;
3448 
3449         default:
3450                 /* No support for anything else yet. */
3451                 rv = -EIO;
3452                 goto out_err;
3453         }
3454 
3455         /* Allocate the state machine's data and initialize it. */
3456         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3457         if (!new_smi->si_sm) {
3458                 printk(KERN_ERR PFX
3459                        "Could not allocate state machine memory\n");
3460                 rv = -ENOMEM;
3461                 goto out_err;
3462         }
3463         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3464                                                         &new_smi->io);
3465 
3466         /* Now that we know the I/O size, we can set up the I/O. */
3467         rv = new_smi->io_setup(new_smi);
3468         if (rv) {
3469                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3470                 goto out_err;
3471         }
3472 
3473         /* Do low-level detection first. */
3474         if (new_smi->handlers->detect(new_smi->si_sm)) {
3475                 if (new_smi->addr_source)
3476                         printk(KERN_INFO PFX "Interface detection failed\n");
3477                 rv = -ENODEV;
3478                 goto out_err;
3479         }
3480 
3481         /*
3482          * Attempt a get device id command.  If it fails, we probably
3483          * don't have a BMC here.
3484          */
3485         rv = try_get_dev_id(new_smi);
3486         if (rv) {
3487                 if (new_smi->addr_source)
3488                         printk(KERN_INFO PFX "There appears to be no BMC"
3489                                " at this location\n");
3490                 goto out_err;
3491         }
3492 
3493         check_clr_rcv_irq(new_smi);
3494 
3495         setup_oem_data_handler(new_smi);
3496         setup_xaction_handlers(new_smi);
3497 
3498         new_smi->waiting_msg = NULL;
3499         new_smi->curr_msg = NULL;
3500         atomic_set(&new_smi->req_events, 0);
3501         new_smi->run_to_completion = false;
3502         for (i = 0; i < SI_NUM_STATS; i++)
3503                 atomic_set(&new_smi->stats[i], 0);
3504 
3505         new_smi->interrupt_disabled = true;
3506         atomic_set(&new_smi->need_watch, 0);
3507         new_smi->intf_num = smi_num;
3508         smi_num++;
3509 
3510         rv = try_enable_event_buffer(new_smi);
3511         if (rv == 0)
3512                 new_smi->has_event_buffer = true;
3513 
3514         /*
3515          * Start clearing the flags before we enable interrupts or the
3516          * timer to avoid racing with the timer.
3517          */
3518         start_clear_flags(new_smi);
3519 
3520         /*
3521          * IRQ is defined to be set when non-zero.  req_events will
3522          * cause a global flags check that will enable interrupts.
3523          */
3524         if (new_smi->irq) {
3525                 new_smi->interrupt_disabled = false;
3526                 atomic_set(&new_smi->req_events, 1);
3527         }
3528 
3529         if (!new_smi->dev) {
3530                 /*
3531                  * If we don't already have a device from something
3532                  * else (like PCI), then register a new one.
3533                  */
3534                 new_smi->pdev = platform_device_alloc("ipmi_si",
3535                                                       new_smi->intf_num);
3536                 if (!new_smi->pdev) {
3537                         printk(KERN_ERR PFX
3538                                "Unable to allocate platform device\n");
3539                         goto out_err;
3540                 }
3541                 new_smi->dev = &new_smi->pdev->dev;
3542                 new_smi->dev->driver = &ipmi_driver.driver;
3543 
3544                 rv = platform_device_add(new_smi->pdev);
3545                 if (rv) {
3546                         printk(KERN_ERR PFX
3547                                "Unable to register system interface device:"
3548                                " %d\n",
3549                                rv);
3550                         goto out_err;
3551                 }
3552                 new_smi->dev_registered = true;
3553         }
3554 
3555         rv = ipmi_register_smi(&handlers,
3556                                new_smi,
3557                                &new_smi->device_id,
3558                                new_smi->dev,
3559                                new_smi->slave_addr);
3560         if (rv) {
3561                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3562                         rv);
3563                 goto out_err_stop_timer;
3564         }
3565 
3566         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3567                                      &smi_type_proc_ops,
3568                                      new_smi);
3569         if (rv) {
3570                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3571                 goto out_err_stop_timer;
3572         }
3573 
3574         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3575                                      &smi_si_stats_proc_ops,
3576                                      new_smi);
3577         if (rv) {
3578                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3579                 goto out_err_stop_timer;
3580         }
3581 
3582         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3583                                      &smi_params_proc_ops,
3584                                      new_smi);
3585         if (rv) {
3586                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3587                 goto out_err_stop_timer;
3588         }
3589 
3590         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3591                  si_to_str[new_smi->si_type]);
3592 
3593         return 0;
3594 
3595  out_err_stop_timer:
3596         wait_for_timer_and_thread(new_smi);
3597 
3598  out_err:
3599         new_smi->interrupt_disabled = true;
3600 
3601         if (new_smi->intf) {
3602                 ipmi_smi_t intf = new_smi->intf;
3603                 new_smi->intf = NULL;
3604                 ipmi_unregister_smi(intf);
3605         }
3606 
3607         if (new_smi->irq_cleanup) {
3608                 new_smi->irq_cleanup(new_smi);
3609                 new_smi->irq_cleanup = NULL;
3610         }
3611 
3612         /*
3613          * Wait until we know that we are out of any interrupt
3614          * handlers might have been running before we freed the
3615          * interrupt.
3616          */
3617         synchronize_sched();
3618 
3619         if (new_smi->si_sm) {
3620                 if (new_smi->handlers)
3621                         new_smi->handlers->cleanup(new_smi->si_sm);
3622                 kfree(new_smi->si_sm);
3623                 new_smi->si_sm = NULL;
3624         }
3625         if (new_smi->addr_source_cleanup) {
3626                 new_smi->addr_source_cleanup(new_smi);
3627                 new_smi->addr_source_cleanup = NULL;
3628         }
3629         if (new_smi->io_cleanup) {
3630                 new_smi->io_cleanup(new_smi);
3631                 new_smi->io_cleanup = NULL;
3632         }
3633 
3634         if (new_smi->dev_registered) {
3635                 platform_device_unregister(new_smi->pdev);
3636                 new_smi->dev_registered = false;
3637         }
3638 
3639         return rv;
3640 }
3641 
3642 static int init_ipmi_si(void)
3643 {
3644         int  i;
3645         char *str;
3646         int  rv;
3647         struct smi_info *e;
3648         enum ipmi_addr_src type = SI_INVALID;
3649 
3650         if (initialized)
3651                 return 0;
3652         initialized = 1;
3653 
3654         if (si_tryplatform) {
3655                 rv = platform_driver_register(&ipmi_driver);
3656                 if (rv) {
3657                         printk(KERN_ERR PFX "Unable to register "
3658                                "driver: %d\n", rv);
3659                         return rv;
3660                 }
3661         }
3662 
3663         /* Parse out the si_type string into its components. */
3664         str = si_type_str;
3665         if (*str != '\0') {
3666                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3667                         si_type[i] = str;
3668                         str = strchr(str, ',');
3669                         if (str) {
3670                                 *str = '\0';
3671                                 str++;
3672                         } else {
3673                                 break;
3674                         }
3675                 }
3676         }
3677 
3678         printk(KERN_INFO "IPMI System Interface driver.\n");
3679 
3680         /* If the user gave us a device, they presumably want us to use it */
3681         if (!hardcode_find_bmc())
3682                 return 0;
3683 
3684 #ifdef CONFIG_PCI
3685         if (si_trypci) {
3686                 rv = pci_register_driver(&ipmi_pci_driver);
3687                 if (rv)
3688                         printk(KERN_ERR PFX "Unable to register "
3689                                "PCI driver: %d\n", rv);
3690                 else
3691                         pci_registered = true;
3692         }
3693 #endif
3694 
3695 #ifdef CONFIG_ACPI
3696         if (si_tryacpi) {
3697                 pnp_register_driver(&ipmi_pnp_driver);
3698                 pnp_registered = true;
3699         }
3700 #endif
3701 
3702 #ifdef CONFIG_DMI
3703         if (si_trydmi)
3704                 dmi_find_bmc();
3705 #endif
3706 
3707 #ifdef CONFIG_ACPI
3708         if (si_tryacpi)
3709                 spmi_find_bmc();
3710 #endif
3711 
3712 #ifdef CONFIG_PARISC
3713         register_parisc_driver(&ipmi_parisc_driver);
3714         parisc_registered = true;
3715         /* poking PC IO addresses will crash machine, don't do it */
3716         si_trydefaults = 0;
3717 #endif
3718 
3719         /* We prefer devices with interrupts, but in the case of a machine
3720            with multiple BMCs we assume that there will be several instances
3721            of a given type so if we succeed in registering a type then also
3722            try to register everything else of the same type */
3723 
3724         mutex_lock(&smi_infos_lock);
3725         list_for_each_entry(e, &smi_infos, link) {
3726                 /* Try to register a device if it has an IRQ and we either
3727                    haven't successfully registered a device yet or this
3728                    device has the same type as one we successfully registered */
3729                 if (e->irq && (!type || e->addr_source == type)) {
3730                         if (!try_smi_init(e)) {
3731                                 type = e->addr_source;
3732                         }
3733                 }
3734         }
3735 
3736         /* type will only have been set if we successfully registered an si */
3737         if (type) {
3738                 mutex_unlock(&smi_infos_lock);
3739                 return 0;
3740         }
3741 
3742         /* Fall back to the preferred device */
3743 
3744         list_for_each_entry(e, &smi_infos, link) {
3745                 if (!e->irq && (!type || e->addr_source == type)) {
3746                         if (!try_smi_init(e)) {
3747                                 type = e->addr_source;
3748                         }
3749                 }
3750         }
3751         mutex_unlock(&smi_infos_lock);
3752 
3753         if (type)
3754                 return 0;
3755 
3756         if (si_trydefaults) {
3757                 mutex_lock(&smi_infos_lock);
3758                 if (list_empty(&smi_infos)) {
3759                         /* No BMC was found, try defaults. */
3760                         mutex_unlock(&smi_infos_lock);
3761                         default_find_bmc();
3762                 } else
3763                         mutex_unlock(&smi_infos_lock);
3764         }
3765 
3766         mutex_lock(&smi_infos_lock);
3767         if (unload_when_empty && list_empty(&smi_infos)) {
3768                 mutex_unlock(&smi_infos_lock);
3769                 cleanup_ipmi_si();
3770                 printk(KERN_WARNING PFX
3771                        "Unable to find any System Interface(s)\n");
3772                 return -ENODEV;
3773         } else {
3774                 mutex_unlock(&smi_infos_lock);
3775                 return 0;
3776         }
3777 }
3778 module_init(init_ipmi_si);
3779 
3780 static void cleanup_one_si(struct smi_info *to_clean)
3781 {
3782         int           rv = 0;
3783 
3784         if (!to_clean)
3785                 return;
3786 
3787         if (to_clean->intf) {
3788                 ipmi_smi_t intf = to_clean->intf;
3789 
3790                 to_clean->intf = NULL;
3791                 rv = ipmi_unregister_smi(intf);
3792                 if (rv) {
3793                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3794                                rv);
3795                 }
3796         }
3797 
3798         if (to_clean->dev)
3799                 dev_set_drvdata(to_clean->dev, NULL);
3800 
3801         list_del(&to_clean->link);
3802 
3803         /*
3804          * Make sure that interrupts, the timer and the thread are
3805          * stopped and will not run again.
3806          */
3807         if (to_clean->irq_cleanup)
3808                 to_clean->irq_cleanup(to_clean);
3809         wait_for_timer_and_thread(to_clean);
3810 
3811         /*
3812          * Timeouts are stopped, now make sure the interrupts are off
3813          * in the BMC.  Note that timers and CPU interrupts are off,
3814          * so no need for locks.
3815          */
3816         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3817                 poll(to_clean);
3818                 schedule_timeout_uninterruptible(1);
3819         }
3820         disable_si_irq(to_clean);
3821         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3822                 poll(to_clean);
3823                 schedule_timeout_uninterruptible(1);
3824         }
3825 
3826         if (to_clean->handlers)
3827                 to_clean->handlers->cleanup(to_clean->si_sm);
3828 
3829         kfree(to_clean->si_sm);
3830 
3831         if (to_clean->addr_source_cleanup)
3832                 to_clean->addr_source_cleanup(to_clean);
3833         if (to_clean->io_cleanup)
3834                 to_clean->io_cleanup(to_clean);
3835 
3836         if (to_clean->dev_registered)
3837                 platform_device_unregister(to_clean->pdev);
3838 
3839         kfree(to_clean);
3840 }
3841 
3842 static void cleanup_ipmi_si(void)
3843 {
3844         struct smi_info *e, *tmp_e;
3845 
3846         if (!initialized)
3847                 return;
3848 
3849 #ifdef CONFIG_PCI
3850         if (pci_registered)
3851                 pci_unregister_driver(&ipmi_pci_driver);
3852 #endif
3853 #ifdef CONFIG_ACPI
3854         if (pnp_registered)
3855                 pnp_unregister_driver(&ipmi_pnp_driver);
3856 #endif
3857 #ifdef CONFIG_PARISC
3858         if (parisc_registered)
3859                 unregister_parisc_driver(&ipmi_parisc_driver);
3860 #endif
3861 
3862         platform_driver_unregister(&ipmi_driver);
3863 
3864         mutex_lock(&smi_infos_lock);
3865         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3866                 cleanup_one_si(e);
3867         mutex_unlock(&smi_infos_lock);
3868 }
3869 module_exit(cleanup_ipmi_si);
3870 
3871 MODULE_LICENSE("GPL");
3872 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3873 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3874                    " system interfaces.");
3875 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us