Version:  2.0.40 2.2.26 2.4.37 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4

Linux/drivers/char/ipmi/ipmi_si_intf.c

  1 /*
  2  * ipmi_si.c
  3  *
  4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
  5  * BT).
  6  *
  7  * Author: MontaVista Software, Inc.
  8  *         Corey Minyard <minyard@mvista.com>
  9  *         source@mvista.com
 10  *
 11  * Copyright 2002 MontaVista Software Inc.
 12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
 13  *
 14  *  This program is free software; you can redistribute it and/or modify it
 15  *  under the terms of the GNU General Public License as published by the
 16  *  Free Software Foundation; either version 2 of the License, or (at your
 17  *  option) any later version.
 18  *
 19  *
 20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 30  *
 31  *  You should have received a copy of the GNU General Public License along
 32  *  with this program; if not, write to the Free Software Foundation, Inc.,
 33  *  675 Mass Ave, Cambridge, MA 02139, USA.
 34  */
 35 
 36 /*
 37  * This file holds the "policy" for the interface to the SMI state
 38  * machine.  It does the configuration, handles timers and interrupts,
 39  * and drives the real SMI state machine.
 40  */
 41 
 42 #include <linux/module.h>
 43 #include <linux/moduleparam.h>
 44 #include <linux/sched.h>
 45 #include <linux/seq_file.h>
 46 #include <linux/timer.h>
 47 #include <linux/errno.h>
 48 #include <linux/spinlock.h>
 49 #include <linux/slab.h>
 50 #include <linux/delay.h>
 51 #include <linux/list.h>
 52 #include <linux/pci.h>
 53 #include <linux/ioport.h>
 54 #include <linux/notifier.h>
 55 #include <linux/mutex.h>
 56 #include <linux/kthread.h>
 57 #include <asm/irq.h>
 58 #include <linux/interrupt.h>
 59 #include <linux/rcupdate.h>
 60 #include <linux/ipmi.h>
 61 #include <linux/ipmi_smi.h>
 62 #include <asm/io.h>
 63 #include "ipmi_si_sm.h"
 64 #include <linux/dmi.h>
 65 #include <linux/string.h>
 66 #include <linux/ctype.h>
 67 #include <linux/of_device.h>
 68 #include <linux/of_platform.h>
 69 #include <linux/of_address.h>
 70 #include <linux/of_irq.h>
 71 
 72 #ifdef CONFIG_PARISC
 73 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
 74 #include <asm/parisc-device.h>
 75 #endif
 76 
 77 #define PFX "ipmi_si: "
 78 
 79 /* Measure times between events in the driver. */
 80 #undef DEBUG_TIMING
 81 
 82 /* Call every 10 ms. */
 83 #define SI_TIMEOUT_TIME_USEC    10000
 84 #define SI_USEC_PER_JIFFY       (1000000/HZ)
 85 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
 86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
 87                                       short timeout */
 88 
 89 enum si_intf_state {
 90         SI_NORMAL,
 91         SI_GETTING_FLAGS,
 92         SI_GETTING_EVENTS,
 93         SI_CLEARING_FLAGS,
 94         SI_GETTING_MESSAGES,
 95         SI_CHECKING_ENABLES,
 96         SI_SETTING_ENABLES
 97         /* FIXME - add watchdog stuff. */
 98 };
 99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 #define DEVICE_NAME "ipmi_si"
111 
112 static struct platform_driver ipmi_driver;
113 
114 /*
115  * Indexes into stats[] in smi_info below.
116  */
117 enum si_stat_indexes {
118         /*
119          * Number of times the driver requested a timer while an operation
120          * was in progress.
121          */
122         SI_STAT_short_timeouts = 0,
123 
124         /*
125          * Number of times the driver requested a timer while nothing was in
126          * progress.
127          */
128         SI_STAT_long_timeouts,
129 
130         /* Number of times the interface was idle while being polled. */
131         SI_STAT_idles,
132 
133         /* Number of interrupts the driver handled. */
134         SI_STAT_interrupts,
135 
136         /* Number of time the driver got an ATTN from the hardware. */
137         SI_STAT_attentions,
138 
139         /* Number of times the driver requested flags from the hardware. */
140         SI_STAT_flag_fetches,
141 
142         /* Number of times the hardware didn't follow the state machine. */
143         SI_STAT_hosed_count,
144 
145         /* Number of completed messages. */
146         SI_STAT_complete_transactions,
147 
148         /* Number of IPMI events received from the hardware. */
149         SI_STAT_events,
150 
151         /* Number of watchdog pretimeouts. */
152         SI_STAT_watchdog_pretimeouts,
153 
154         /* Number of asynchronous messages received. */
155         SI_STAT_incoming_messages,
156 
157 
158         /* This *must* remain last, add new values above this. */
159         SI_NUM_STATS
160 };
161 
162 struct smi_info {
163         int                    intf_num;
164         ipmi_smi_t             intf;
165         struct si_sm_data      *si_sm;
166         const struct si_sm_handlers *handlers;
167         enum si_type           si_type;
168         spinlock_t             si_lock;
169         struct ipmi_smi_msg    *waiting_msg;
170         struct ipmi_smi_msg    *curr_msg;
171         enum si_intf_state     si_state;
172 
173         /*
174          * Used to handle the various types of I/O that can occur with
175          * IPMI
176          */
177         struct si_sm_io io;
178         int (*io_setup)(struct smi_info *info);
179         void (*io_cleanup)(struct smi_info *info);
180         int (*irq_setup)(struct smi_info *info);
181         void (*irq_cleanup)(struct smi_info *info);
182         unsigned int io_size;
183         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
184         void (*addr_source_cleanup)(struct smi_info *info);
185         void *addr_source_data;
186 
187         /*
188          * Per-OEM handler, called from handle_flags().  Returns 1
189          * when handle_flags() needs to be re-run or 0 indicating it
190          * set si_state itself.
191          */
192         int (*oem_data_avail_handler)(struct smi_info *smi_info);
193 
194         /*
195          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196          * is set to hold the flags until we are done handling everything
197          * from the flags.
198          */
199 #define RECEIVE_MSG_AVAIL       0x01
200 #define EVENT_MSG_BUFFER_FULL   0x02
201 #define WDT_PRE_TIMEOUT_INT     0x08
202 #define OEM0_DATA_AVAIL     0x20
203 #define OEM1_DATA_AVAIL     0x40
204 #define OEM2_DATA_AVAIL     0x80
205 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
206                              OEM1_DATA_AVAIL | \
207                              OEM2_DATA_AVAIL)
208         unsigned char       msg_flags;
209 
210         /* Does the BMC have an event buffer? */
211         bool                has_event_buffer;
212 
213         /*
214          * If set to true, this will request events the next time the
215          * state machine is idle.
216          */
217         atomic_t            req_events;
218 
219         /*
220          * If true, run the state machine to completion on every send
221          * call.  Generally used after a panic to make sure stuff goes
222          * out.
223          */
224         bool                run_to_completion;
225 
226         /* The I/O port of an SI interface. */
227         int                 port;
228 
229         /*
230          * The space between start addresses of the two ports.  For
231          * instance, if the first port is 0xca2 and the spacing is 4, then
232          * the second port is 0xca6.
233          */
234         unsigned int        spacing;
235 
236         /* zero if no irq; */
237         int                 irq;
238 
239         /* The timer for this si. */
240         struct timer_list   si_timer;
241 
242         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
243         bool                timer_running;
244 
245         /* The time (in jiffies) the last timeout occurred at. */
246         unsigned long       last_timeout_jiffies;
247 
248         /* Are we waiting for the events, pretimeouts, received msgs? */
249         atomic_t            need_watch;
250 
251         /*
252          * The driver will disable interrupts when it gets into a
253          * situation where it cannot handle messages due to lack of
254          * memory.  Once that situation clears up, it will re-enable
255          * interrupts.
256          */
257         bool interrupt_disabled;
258 
259         /*
260          * Does the BMC support events?
261          */
262         bool supports_event_msg_buff;
263 
264         /*
265          * Can we disable interrupts the global enables receive irq
266          * bit?  There are currently two forms of brokenness, some
267          * systems cannot disable the bit (which is technically within
268          * the spec but a bad idea) and some systems have the bit
269          * forced to zero even though interrupts work (which is
270          * clearly outside the spec).  The next bool tells which form
271          * of brokenness is present.
272          */
273         bool cannot_disable_irq;
274 
275         /*
276          * Some systems are broken and cannot set the irq enable
277          * bit, even if they support interrupts.
278          */
279         bool irq_enable_broken;
280 
281         /*
282          * Did we get an attention that we did not handle?
283          */
284         bool got_attn;
285 
286         /* From the get device id response... */
287         struct ipmi_device_id device_id;
288 
289         /* Driver model stuff. */
290         struct device *dev;
291         struct platform_device *pdev;
292 
293         /*
294          * True if we allocated the device, false if it came from
295          * someplace else (like PCI).
296          */
297         bool dev_registered;
298 
299         /* Slave address, could be reported from DMI. */
300         unsigned char slave_addr;
301 
302         /* Counters and things for the proc filesystem. */
303         atomic_t stats[SI_NUM_STATS];
304 
305         struct task_struct *thread;
306 
307         struct list_head link;
308         union ipmi_smi_info_union addr_info;
309 };
310 
311 #define smi_inc_stat(smi, stat) \
312         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
313 #define smi_get_stat(smi, stat) \
314         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
315 
316 #define SI_MAX_PARMS 4
317 
318 static int force_kipmid[SI_MAX_PARMS];
319 static int num_force_kipmid;
320 #ifdef CONFIG_PCI
321 static bool pci_registered;
322 #endif
323 #ifdef CONFIG_PARISC
324 static bool parisc_registered;
325 #endif
326 
327 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
328 static int num_max_busy_us;
329 
330 static bool unload_when_empty = true;
331 
332 static int add_smi(struct smi_info *smi);
333 static int try_smi_init(struct smi_info *smi);
334 static void cleanup_one_si(struct smi_info *to_clean);
335 static void cleanup_ipmi_si(void);
336 
337 #ifdef DEBUG_TIMING
338 void debug_timestamp(char *msg)
339 {
340         struct timespec64 t;
341 
342         getnstimeofday64(&t);
343         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
344 }
345 #else
346 #define debug_timestamp(x)
347 #endif
348 
349 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
350 static int register_xaction_notifier(struct notifier_block *nb)
351 {
352         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
353 }
354 
355 static void deliver_recv_msg(struct smi_info *smi_info,
356                              struct ipmi_smi_msg *msg)
357 {
358         /* Deliver the message to the upper layer. */
359         if (smi_info->intf)
360                 ipmi_smi_msg_received(smi_info->intf, msg);
361         else
362                 ipmi_free_smi_msg(msg);
363 }
364 
365 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
366 {
367         struct ipmi_smi_msg *msg = smi_info->curr_msg;
368 
369         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
370                 cCode = IPMI_ERR_UNSPECIFIED;
371         /* else use it as is */
372 
373         /* Make it a response */
374         msg->rsp[0] = msg->data[0] | 4;
375         msg->rsp[1] = msg->data[1];
376         msg->rsp[2] = cCode;
377         msg->rsp_size = 3;
378 
379         smi_info->curr_msg = NULL;
380         deliver_recv_msg(smi_info, msg);
381 }
382 
383 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
384 {
385         int              rv;
386 
387         if (!smi_info->waiting_msg) {
388                 smi_info->curr_msg = NULL;
389                 rv = SI_SM_IDLE;
390         } else {
391                 int err;
392 
393                 smi_info->curr_msg = smi_info->waiting_msg;
394                 smi_info->waiting_msg = NULL;
395                 debug_timestamp("Start2");
396                 err = atomic_notifier_call_chain(&xaction_notifier_list,
397                                 0, smi_info);
398                 if (err & NOTIFY_STOP_MASK) {
399                         rv = SI_SM_CALL_WITHOUT_DELAY;
400                         goto out;
401                 }
402                 err = smi_info->handlers->start_transaction(
403                         smi_info->si_sm,
404                         smi_info->curr_msg->data,
405                         smi_info->curr_msg->data_size);
406                 if (err)
407                         return_hosed_msg(smi_info, err);
408 
409                 rv = SI_SM_CALL_WITHOUT_DELAY;
410         }
411  out:
412         return rv;
413 }
414 
415 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
416 {
417         smi_info->last_timeout_jiffies = jiffies;
418         mod_timer(&smi_info->si_timer, new_val);
419         smi_info->timer_running = true;
420 }
421 
422 /*
423  * Start a new message and (re)start the timer and thread.
424  */
425 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
426                           unsigned int size)
427 {
428         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
429 
430         if (smi_info->thread)
431                 wake_up_process(smi_info->thread);
432 
433         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
434 }
435 
436 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
437 {
438         unsigned char msg[2];
439 
440         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
441         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
442 
443         if (start_timer)
444                 start_new_msg(smi_info, msg, 2);
445         else
446                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
447         smi_info->si_state = SI_CHECKING_ENABLES;
448 }
449 
450 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
451 {
452         unsigned char msg[3];
453 
454         /* Make sure the watchdog pre-timeout flag is not set at startup. */
455         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
456         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
457         msg[2] = WDT_PRE_TIMEOUT_INT;
458 
459         if (start_timer)
460                 start_new_msg(smi_info, msg, 3);
461         else
462                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
463         smi_info->si_state = SI_CLEARING_FLAGS;
464 }
465 
466 static void start_getting_msg_queue(struct smi_info *smi_info)
467 {
468         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
469         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
470         smi_info->curr_msg->data_size = 2;
471 
472         start_new_msg(smi_info, smi_info->curr_msg->data,
473                       smi_info->curr_msg->data_size);
474         smi_info->si_state = SI_GETTING_MESSAGES;
475 }
476 
477 static void start_getting_events(struct smi_info *smi_info)
478 {
479         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
480         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
481         smi_info->curr_msg->data_size = 2;
482 
483         start_new_msg(smi_info, smi_info->curr_msg->data,
484                       smi_info->curr_msg->data_size);
485         smi_info->si_state = SI_GETTING_EVENTS;
486 }
487 
488 /*
489  * When we have a situtaion where we run out of memory and cannot
490  * allocate messages, we just leave them in the BMC and run the system
491  * polled until we can allocate some memory.  Once we have some
492  * memory, we will re-enable the interrupt.
493  *
494  * Note that we cannot just use disable_irq(), since the interrupt may
495  * be shared.
496  */
497 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
498 {
499         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
500                 smi_info->interrupt_disabled = true;
501                 start_check_enables(smi_info, start_timer);
502                 return true;
503         }
504         return false;
505 }
506 
507 static inline bool enable_si_irq(struct smi_info *smi_info)
508 {
509         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
510                 smi_info->interrupt_disabled = false;
511                 start_check_enables(smi_info, true);
512                 return true;
513         }
514         return false;
515 }
516 
517 /*
518  * Allocate a message.  If unable to allocate, start the interrupt
519  * disable process and return NULL.  If able to allocate but
520  * interrupts are disabled, free the message and return NULL after
521  * starting the interrupt enable process.
522  */
523 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
524 {
525         struct ipmi_smi_msg *msg;
526 
527         msg = ipmi_alloc_smi_msg();
528         if (!msg) {
529                 if (!disable_si_irq(smi_info, true))
530                         smi_info->si_state = SI_NORMAL;
531         } else if (enable_si_irq(smi_info)) {
532                 ipmi_free_smi_msg(msg);
533                 msg = NULL;
534         }
535         return msg;
536 }
537 
538 static void handle_flags(struct smi_info *smi_info)
539 {
540  retry:
541         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
542                 /* Watchdog pre-timeout */
543                 smi_inc_stat(smi_info, watchdog_pretimeouts);
544 
545                 start_clear_flags(smi_info, true);
546                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
547                 if (smi_info->intf)
548                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
549         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
550                 /* Messages available. */
551                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
552                 if (!smi_info->curr_msg)
553                         return;
554 
555                 start_getting_msg_queue(smi_info);
556         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
557                 /* Events available. */
558                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
559                 if (!smi_info->curr_msg)
560                         return;
561 
562                 start_getting_events(smi_info);
563         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
564                    smi_info->oem_data_avail_handler) {
565                 if (smi_info->oem_data_avail_handler(smi_info))
566                         goto retry;
567         } else
568                 smi_info->si_state = SI_NORMAL;
569 }
570 
571 /*
572  * Global enables we care about.
573  */
574 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
575                              IPMI_BMC_EVT_MSG_INTR)
576 
577 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
578                                  bool *irq_on)
579 {
580         u8 enables = 0;
581 
582         if (smi_info->supports_event_msg_buff)
583                 enables |= IPMI_BMC_EVT_MSG_BUFF;
584 
585         if (((smi_info->irq && !smi_info->interrupt_disabled) ||
586              smi_info->cannot_disable_irq) &&
587             !smi_info->irq_enable_broken)
588                 enables |= IPMI_BMC_RCV_MSG_INTR;
589 
590         if (smi_info->supports_event_msg_buff &&
591             smi_info->irq && !smi_info->interrupt_disabled &&
592             !smi_info->irq_enable_broken)
593                 enables |= IPMI_BMC_EVT_MSG_INTR;
594 
595         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
596 
597         return enables;
598 }
599 
600 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
601 {
602         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
603 
604         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
605 
606         if ((bool)irqstate == irq_on)
607                 return;
608 
609         if (irq_on)
610                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
611                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
612         else
613                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
614 }
615 
616 static void handle_transaction_done(struct smi_info *smi_info)
617 {
618         struct ipmi_smi_msg *msg;
619 
620         debug_timestamp("Done");
621         switch (smi_info->si_state) {
622         case SI_NORMAL:
623                 if (!smi_info->curr_msg)
624                         break;
625 
626                 smi_info->curr_msg->rsp_size
627                         = smi_info->handlers->get_result(
628                                 smi_info->si_sm,
629                                 smi_info->curr_msg->rsp,
630                                 IPMI_MAX_MSG_LENGTH);
631 
632                 /*
633                  * Do this here becase deliver_recv_msg() releases the
634                  * lock, and a new message can be put in during the
635                  * time the lock is released.
636                  */
637                 msg = smi_info->curr_msg;
638                 smi_info->curr_msg = NULL;
639                 deliver_recv_msg(smi_info, msg);
640                 break;
641 
642         case SI_GETTING_FLAGS:
643         {
644                 unsigned char msg[4];
645                 unsigned int  len;
646 
647                 /* We got the flags from the SMI, now handle them. */
648                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
649                 if (msg[2] != 0) {
650                         /* Error fetching flags, just give up for now. */
651                         smi_info->si_state = SI_NORMAL;
652                 } else if (len < 4) {
653                         /*
654                          * Hmm, no flags.  That's technically illegal, but
655                          * don't use uninitialized data.
656                          */
657                         smi_info->si_state = SI_NORMAL;
658                 } else {
659                         smi_info->msg_flags = msg[3];
660                         handle_flags(smi_info);
661                 }
662                 break;
663         }
664 
665         case SI_CLEARING_FLAGS:
666         {
667                 unsigned char msg[3];
668 
669                 /* We cleared the flags. */
670                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
671                 if (msg[2] != 0) {
672                         /* Error clearing flags */
673                         dev_warn(smi_info->dev,
674                                  "Error clearing flags: %2.2x\n", msg[2]);
675                 }
676                 smi_info->si_state = SI_NORMAL;
677                 break;
678         }
679 
680         case SI_GETTING_EVENTS:
681         {
682                 smi_info->curr_msg->rsp_size
683                         = smi_info->handlers->get_result(
684                                 smi_info->si_sm,
685                                 smi_info->curr_msg->rsp,
686                                 IPMI_MAX_MSG_LENGTH);
687 
688                 /*
689                  * Do this here becase deliver_recv_msg() releases the
690                  * lock, and a new message can be put in during the
691                  * time the lock is released.
692                  */
693                 msg = smi_info->curr_msg;
694                 smi_info->curr_msg = NULL;
695                 if (msg->rsp[2] != 0) {
696                         /* Error getting event, probably done. */
697                         msg->done(msg);
698 
699                         /* Take off the event flag. */
700                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
701                         handle_flags(smi_info);
702                 } else {
703                         smi_inc_stat(smi_info, events);
704 
705                         /*
706                          * Do this before we deliver the message
707                          * because delivering the message releases the
708                          * lock and something else can mess with the
709                          * state.
710                          */
711                         handle_flags(smi_info);
712 
713                         deliver_recv_msg(smi_info, msg);
714                 }
715                 break;
716         }
717 
718         case SI_GETTING_MESSAGES:
719         {
720                 smi_info->curr_msg->rsp_size
721                         = smi_info->handlers->get_result(
722                                 smi_info->si_sm,
723                                 smi_info->curr_msg->rsp,
724                                 IPMI_MAX_MSG_LENGTH);
725 
726                 /*
727                  * Do this here becase deliver_recv_msg() releases the
728                  * lock, and a new message can be put in during the
729                  * time the lock is released.
730                  */
731                 msg = smi_info->curr_msg;
732                 smi_info->curr_msg = NULL;
733                 if (msg->rsp[2] != 0) {
734                         /* Error getting event, probably done. */
735                         msg->done(msg);
736 
737                         /* Take off the msg flag. */
738                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
739                         handle_flags(smi_info);
740                 } else {
741                         smi_inc_stat(smi_info, incoming_messages);
742 
743                         /*
744                          * Do this before we deliver the message
745                          * because delivering the message releases the
746                          * lock and something else can mess with the
747                          * state.
748                          */
749                         handle_flags(smi_info);
750 
751                         deliver_recv_msg(smi_info, msg);
752                 }
753                 break;
754         }
755 
756         case SI_CHECKING_ENABLES:
757         {
758                 unsigned char msg[4];
759                 u8 enables;
760                 bool irq_on;
761 
762                 /* We got the flags from the SMI, now handle them. */
763                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
764                 if (msg[2] != 0) {
765                         dev_warn(smi_info->dev,
766                                  "Couldn't get irq info: %x.\n", msg[2]);
767                         dev_warn(smi_info->dev,
768                                  "Maybe ok, but ipmi might run very slowly.\n");
769                         smi_info->si_state = SI_NORMAL;
770                         break;
771                 }
772                 enables = current_global_enables(smi_info, 0, &irq_on);
773                 if (smi_info->si_type == SI_BT)
774                         /* BT has its own interrupt enable bit. */
775                         check_bt_irq(smi_info, irq_on);
776                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
777                         /* Enables are not correct, fix them. */
778                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
779                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
780                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
781                         smi_info->handlers->start_transaction(
782                                 smi_info->si_sm, msg, 3);
783                         smi_info->si_state = SI_SETTING_ENABLES;
784                 } else if (smi_info->supports_event_msg_buff) {
785                         smi_info->curr_msg = ipmi_alloc_smi_msg();
786                         if (!smi_info->curr_msg) {
787                                 smi_info->si_state = SI_NORMAL;
788                                 break;
789                         }
790                         start_getting_msg_queue(smi_info);
791                 } else {
792                         smi_info->si_state = SI_NORMAL;
793                 }
794                 break;
795         }
796 
797         case SI_SETTING_ENABLES:
798         {
799                 unsigned char msg[4];
800 
801                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
802                 if (msg[2] != 0)
803                         dev_warn(smi_info->dev,
804                                  "Could not set the global enables: 0x%x.\n",
805                                  msg[2]);
806 
807                 if (smi_info->supports_event_msg_buff) {
808                         smi_info->curr_msg = ipmi_alloc_smi_msg();
809                         if (!smi_info->curr_msg) {
810                                 smi_info->si_state = SI_NORMAL;
811                                 break;
812                         }
813                         start_getting_msg_queue(smi_info);
814                 } else {
815                         smi_info->si_state = SI_NORMAL;
816                 }
817                 break;
818         }
819         }
820 }
821 
822 /*
823  * Called on timeouts and events.  Timeouts should pass the elapsed
824  * time, interrupts should pass in zero.  Must be called with
825  * si_lock held and interrupts disabled.
826  */
827 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
828                                            int time)
829 {
830         enum si_sm_result si_sm_result;
831 
832  restart:
833         /*
834          * There used to be a loop here that waited a little while
835          * (around 25us) before giving up.  That turned out to be
836          * pointless, the minimum delays I was seeing were in the 300us
837          * range, which is far too long to wait in an interrupt.  So
838          * we just run until the state machine tells us something
839          * happened or it needs a delay.
840          */
841         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
842         time = 0;
843         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
844                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
845 
846         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
847                 smi_inc_stat(smi_info, complete_transactions);
848 
849                 handle_transaction_done(smi_info);
850                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
851         } else if (si_sm_result == SI_SM_HOSED) {
852                 smi_inc_stat(smi_info, hosed_count);
853 
854                 /*
855                  * Do the before return_hosed_msg, because that
856                  * releases the lock.
857                  */
858                 smi_info->si_state = SI_NORMAL;
859                 if (smi_info->curr_msg != NULL) {
860                         /*
861                          * If we were handling a user message, format
862                          * a response to send to the upper layer to
863                          * tell it about the error.
864                          */
865                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
866                 }
867                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
868         }
869 
870         /*
871          * We prefer handling attn over new messages.  But don't do
872          * this if there is not yet an upper layer to handle anything.
873          */
874         if (likely(smi_info->intf) &&
875             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
876                 unsigned char msg[2];
877 
878                 if (smi_info->si_state != SI_NORMAL) {
879                         /*
880                          * We got an ATTN, but we are doing something else.
881                          * Handle the ATTN later.
882                          */
883                         smi_info->got_attn = true;
884                 } else {
885                         smi_info->got_attn = false;
886                         smi_inc_stat(smi_info, attentions);
887 
888                         /*
889                          * Got a attn, send down a get message flags to see
890                          * what's causing it.  It would be better to handle
891                          * this in the upper layer, but due to the way
892                          * interrupts work with the SMI, that's not really
893                          * possible.
894                          */
895                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
896                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
897 
898                         start_new_msg(smi_info, msg, 2);
899                         smi_info->si_state = SI_GETTING_FLAGS;
900                         goto restart;
901                 }
902         }
903 
904         /* If we are currently idle, try to start the next message. */
905         if (si_sm_result == SI_SM_IDLE) {
906                 smi_inc_stat(smi_info, idles);
907 
908                 si_sm_result = start_next_msg(smi_info);
909                 if (si_sm_result != SI_SM_IDLE)
910                         goto restart;
911         }
912 
913         if ((si_sm_result == SI_SM_IDLE)
914             && (atomic_read(&smi_info->req_events))) {
915                 /*
916                  * We are idle and the upper layer requested that I fetch
917                  * events, so do so.
918                  */
919                 atomic_set(&smi_info->req_events, 0);
920 
921                 /*
922                  * Take this opportunity to check the interrupt and
923                  * message enable state for the BMC.  The BMC can be
924                  * asynchronously reset, and may thus get interrupts
925                  * disable and messages disabled.
926                  */
927                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
928                         start_check_enables(smi_info, true);
929                 } else {
930                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
931                         if (!smi_info->curr_msg)
932                                 goto out;
933 
934                         start_getting_events(smi_info);
935                 }
936                 goto restart;
937         }
938 
939         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
940                 /* Ok it if fails, the timer will just go off. */
941                 if (del_timer(&smi_info->si_timer))
942                         smi_info->timer_running = false;
943         }
944 
945  out:
946         return si_sm_result;
947 }
948 
949 static void check_start_timer_thread(struct smi_info *smi_info)
950 {
951         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
952                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
953 
954                 if (smi_info->thread)
955                         wake_up_process(smi_info->thread);
956 
957                 start_next_msg(smi_info);
958                 smi_event_handler(smi_info, 0);
959         }
960 }
961 
962 static void flush_messages(void *send_info)
963 {
964         struct smi_info *smi_info = send_info;
965         enum si_sm_result result;
966 
967         /*
968          * Currently, this function is called only in run-to-completion
969          * mode.  This means we are single-threaded, no need for locks.
970          */
971         result = smi_event_handler(smi_info, 0);
972         while (result != SI_SM_IDLE) {
973                 udelay(SI_SHORT_TIMEOUT_USEC);
974                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
975         }
976 }
977 
978 static void sender(void                *send_info,
979                    struct ipmi_smi_msg *msg)
980 {
981         struct smi_info   *smi_info = send_info;
982         unsigned long     flags;
983 
984         debug_timestamp("Enqueue");
985 
986         if (smi_info->run_to_completion) {
987                 /*
988                  * If we are running to completion, start it.  Upper
989                  * layer will call flush_messages to clear it out.
990                  */
991                 smi_info->waiting_msg = msg;
992                 return;
993         }
994 
995         spin_lock_irqsave(&smi_info->si_lock, flags);
996         /*
997          * The following two lines don't need to be under the lock for
998          * the lock's sake, but they do need SMP memory barriers to
999          * avoid getting things out of order.  We are already claiming
1000          * the lock, anyway, so just do it under the lock to avoid the
1001          * ordering problem.
1002          */
1003         BUG_ON(smi_info->waiting_msg);
1004         smi_info->waiting_msg = msg;
1005         check_start_timer_thread(smi_info);
1006         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1007 }
1008 
1009 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1010 {
1011         struct smi_info   *smi_info = send_info;
1012 
1013         smi_info->run_to_completion = i_run_to_completion;
1014         if (i_run_to_completion)
1015                 flush_messages(smi_info);
1016 }
1017 
1018 /*
1019  * Use -1 in the nsec value of the busy waiting timespec to tell that
1020  * we are spinning in kipmid looking for something and not delaying
1021  * between checks
1022  */
1023 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1024 {
1025         ts->tv_nsec = -1;
1026 }
1027 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1028 {
1029         return ts->tv_nsec != -1;
1030 }
1031 
1032 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1033                                         const struct smi_info *smi_info,
1034                                         struct timespec64 *busy_until)
1035 {
1036         unsigned int max_busy_us = 0;
1037 
1038         if (smi_info->intf_num < num_max_busy_us)
1039                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1040         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1041                 ipmi_si_set_not_busy(busy_until);
1042         else if (!ipmi_si_is_busy(busy_until)) {
1043                 getnstimeofday64(busy_until);
1044                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1045         } else {
1046                 struct timespec64 now;
1047 
1048                 getnstimeofday64(&now);
1049                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1050                         ipmi_si_set_not_busy(busy_until);
1051                         return 0;
1052                 }
1053         }
1054         return 1;
1055 }
1056 
1057 
1058 /*
1059  * A busy-waiting loop for speeding up IPMI operation.
1060  *
1061  * Lousy hardware makes this hard.  This is only enabled for systems
1062  * that are not BT and do not have interrupts.  It starts spinning
1063  * when an operation is complete or until max_busy tells it to stop
1064  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1065  * Documentation/IPMI.txt for details.
1066  */
1067 static int ipmi_thread(void *data)
1068 {
1069         struct smi_info *smi_info = data;
1070         unsigned long flags;
1071         enum si_sm_result smi_result;
1072         struct timespec64 busy_until;
1073 
1074         ipmi_si_set_not_busy(&busy_until);
1075         set_user_nice(current, MAX_NICE);
1076         while (!kthread_should_stop()) {
1077                 int busy_wait;
1078 
1079                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1080                 smi_result = smi_event_handler(smi_info, 0);
1081 
1082                 /*
1083                  * If the driver is doing something, there is a possible
1084                  * race with the timer.  If the timer handler see idle,
1085                  * and the thread here sees something else, the timer
1086                  * handler won't restart the timer even though it is
1087                  * required.  So start it here if necessary.
1088                  */
1089                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1090                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1091 
1092                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1093                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1094                                                   &busy_until);
1095                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1096                         ; /* do nothing */
1097                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1098                         schedule();
1099                 else if (smi_result == SI_SM_IDLE) {
1100                         if (atomic_read(&smi_info->need_watch)) {
1101                                 schedule_timeout_interruptible(100);
1102                         } else {
1103                                 /* Wait to be woken up when we are needed. */
1104                                 __set_current_state(TASK_INTERRUPTIBLE);
1105                                 schedule();
1106                         }
1107                 } else
1108                         schedule_timeout_interruptible(1);
1109         }
1110         return 0;
1111 }
1112 
1113 
1114 static void poll(void *send_info)
1115 {
1116         struct smi_info *smi_info = send_info;
1117         unsigned long flags = 0;
1118         bool run_to_completion = smi_info->run_to_completion;
1119 
1120         /*
1121          * Make sure there is some delay in the poll loop so we can
1122          * drive time forward and timeout things.
1123          */
1124         udelay(10);
1125         if (!run_to_completion)
1126                 spin_lock_irqsave(&smi_info->si_lock, flags);
1127         smi_event_handler(smi_info, 10);
1128         if (!run_to_completion)
1129                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1130 }
1131 
1132 static void request_events(void *send_info)
1133 {
1134         struct smi_info *smi_info = send_info;
1135 
1136         if (!smi_info->has_event_buffer)
1137                 return;
1138 
1139         atomic_set(&smi_info->req_events, 1);
1140 }
1141 
1142 static void set_need_watch(void *send_info, bool enable)
1143 {
1144         struct smi_info *smi_info = send_info;
1145         unsigned long flags;
1146 
1147         atomic_set(&smi_info->need_watch, enable);
1148         spin_lock_irqsave(&smi_info->si_lock, flags);
1149         check_start_timer_thread(smi_info);
1150         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1151 }
1152 
1153 static int initialized;
1154 
1155 static void smi_timeout(unsigned long data)
1156 {
1157         struct smi_info   *smi_info = (struct smi_info *) data;
1158         enum si_sm_result smi_result;
1159         unsigned long     flags;
1160         unsigned long     jiffies_now;
1161         long              time_diff;
1162         long              timeout;
1163 
1164         spin_lock_irqsave(&(smi_info->si_lock), flags);
1165         debug_timestamp("Timer");
1166 
1167         jiffies_now = jiffies;
1168         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1169                      * SI_USEC_PER_JIFFY);
1170         smi_result = smi_event_handler(smi_info, time_diff);
1171 
1172         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1173                 /* Running with interrupts, only do long timeouts. */
1174                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1175                 smi_inc_stat(smi_info, long_timeouts);
1176                 goto do_mod_timer;
1177         }
1178 
1179         /*
1180          * If the state machine asks for a short delay, then shorten
1181          * the timer timeout.
1182          */
1183         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1184                 smi_inc_stat(smi_info, short_timeouts);
1185                 timeout = jiffies + 1;
1186         } else {
1187                 smi_inc_stat(smi_info, long_timeouts);
1188                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1189         }
1190 
1191  do_mod_timer:
1192         if (smi_result != SI_SM_IDLE)
1193                 smi_mod_timer(smi_info, timeout);
1194         else
1195                 smi_info->timer_running = false;
1196         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1197 }
1198 
1199 static irqreturn_t si_irq_handler(int irq, void *data)
1200 {
1201         struct smi_info *smi_info = data;
1202         unsigned long   flags;
1203 
1204         spin_lock_irqsave(&(smi_info->si_lock), flags);
1205 
1206         smi_inc_stat(smi_info, interrupts);
1207 
1208         debug_timestamp("Interrupt");
1209 
1210         smi_event_handler(smi_info, 0);
1211         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1212         return IRQ_HANDLED;
1213 }
1214 
1215 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1216 {
1217         struct smi_info *smi_info = data;
1218         /* We need to clear the IRQ flag for the BT interface. */
1219         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1220                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1221                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1222         return si_irq_handler(irq, data);
1223 }
1224 
1225 static int smi_start_processing(void       *send_info,
1226                                 ipmi_smi_t intf)
1227 {
1228         struct smi_info *new_smi = send_info;
1229         int             enable = 0;
1230 
1231         new_smi->intf = intf;
1232 
1233         /* Set up the timer that drives the interface. */
1234         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1235         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1236 
1237         /* Try to claim any interrupts. */
1238         if (new_smi->irq_setup)
1239                 new_smi->irq_setup(new_smi);
1240 
1241         /*
1242          * Check if the user forcefully enabled the daemon.
1243          */
1244         if (new_smi->intf_num < num_force_kipmid)
1245                 enable = force_kipmid[new_smi->intf_num];
1246         /*
1247          * The BT interface is efficient enough to not need a thread,
1248          * and there is no need for a thread if we have interrupts.
1249          */
1250         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1251                 enable = 1;
1252 
1253         if (enable) {
1254                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1255                                               "kipmi%d", new_smi->intf_num);
1256                 if (IS_ERR(new_smi->thread)) {
1257                         dev_notice(new_smi->dev, "Could not start"
1258                                    " kernel thread due to error %ld, only using"
1259                                    " timers to drive the interface\n",
1260                                    PTR_ERR(new_smi->thread));
1261                         new_smi->thread = NULL;
1262                 }
1263         }
1264 
1265         return 0;
1266 }
1267 
1268 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1269 {
1270         struct smi_info *smi = send_info;
1271 
1272         data->addr_src = smi->addr_source;
1273         data->dev = smi->dev;
1274         data->addr_info = smi->addr_info;
1275         get_device(smi->dev);
1276 
1277         return 0;
1278 }
1279 
1280 static void set_maintenance_mode(void *send_info, bool enable)
1281 {
1282         struct smi_info   *smi_info = send_info;
1283 
1284         if (!enable)
1285                 atomic_set(&smi_info->req_events, 0);
1286 }
1287 
1288 static const struct ipmi_smi_handlers handlers = {
1289         .owner                  = THIS_MODULE,
1290         .start_processing       = smi_start_processing,
1291         .get_smi_info           = get_smi_info,
1292         .sender                 = sender,
1293         .request_events         = request_events,
1294         .set_need_watch         = set_need_watch,
1295         .set_maintenance_mode   = set_maintenance_mode,
1296         .set_run_to_completion  = set_run_to_completion,
1297         .flush_messages         = flush_messages,
1298         .poll                   = poll,
1299 };
1300 
1301 /*
1302  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1303  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1304  */
1305 
1306 static LIST_HEAD(smi_infos);
1307 static DEFINE_MUTEX(smi_infos_lock);
1308 static int smi_num; /* Used to sequence the SMIs */
1309 
1310 #define DEFAULT_REGSPACING      1
1311 #define DEFAULT_REGSIZE         1
1312 
1313 #ifdef CONFIG_ACPI
1314 static bool          si_tryacpi = true;
1315 #endif
1316 #ifdef CONFIG_DMI
1317 static bool          si_trydmi = true;
1318 #endif
1319 static bool          si_tryplatform = true;
1320 #ifdef CONFIG_PCI
1321 static bool          si_trypci = true;
1322 #endif
1323 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1324 static char          *si_type[SI_MAX_PARMS];
1325 #define MAX_SI_TYPE_STR 30
1326 static char          si_type_str[MAX_SI_TYPE_STR];
1327 static unsigned long addrs[SI_MAX_PARMS];
1328 static unsigned int num_addrs;
1329 static unsigned int  ports[SI_MAX_PARMS];
1330 static unsigned int num_ports;
1331 static int           irqs[SI_MAX_PARMS];
1332 static unsigned int num_irqs;
1333 static int           regspacings[SI_MAX_PARMS];
1334 static unsigned int num_regspacings;
1335 static int           regsizes[SI_MAX_PARMS];
1336 static unsigned int num_regsizes;
1337 static int           regshifts[SI_MAX_PARMS];
1338 static unsigned int num_regshifts;
1339 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1340 static unsigned int num_slave_addrs;
1341 
1342 #define IPMI_IO_ADDR_SPACE  0
1343 #define IPMI_MEM_ADDR_SPACE 1
1344 static char *addr_space_to_str[] = { "i/o", "mem" };
1345 
1346 static int hotmod_handler(const char *val, struct kernel_param *kp);
1347 
1348 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1349 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1350                  " Documentation/IPMI.txt in the kernel sources for the"
1351                  " gory details.");
1352 
1353 #ifdef CONFIG_ACPI
1354 module_param_named(tryacpi, si_tryacpi, bool, 0);
1355 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1356                  " default scan of the interfaces identified via ACPI");
1357 #endif
1358 #ifdef CONFIG_DMI
1359 module_param_named(trydmi, si_trydmi, bool, 0);
1360 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1361                  " default scan of the interfaces identified via DMI");
1362 #endif
1363 module_param_named(tryplatform, si_tryplatform, bool, 0);
1364 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1365                  " default scan of the interfaces identified via platform"
1366                  " interfaces like openfirmware");
1367 #ifdef CONFIG_PCI
1368 module_param_named(trypci, si_trypci, bool, 0);
1369 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1370                  " default scan of the interfaces identified via pci");
1371 #endif
1372 module_param_named(trydefaults, si_trydefaults, bool, 0);
1373 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1374                  " default scan of the KCS and SMIC interface at the standard"
1375                  " address");
1376 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1377 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1378                  " interface separated by commas.  The types are 'kcs',"
1379                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1380                  " the first interface to kcs and the second to bt");
1381 module_param_array(addrs, ulong, &num_addrs, 0);
1382 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1383                  " addresses separated by commas.  Only use if an interface"
1384                  " is in memory.  Otherwise, set it to zero or leave"
1385                  " it blank.");
1386 module_param_array(ports, uint, &num_ports, 0);
1387 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1388                  " addresses separated by commas.  Only use if an interface"
1389                  " is a port.  Otherwise, set it to zero or leave"
1390                  " it blank.");
1391 module_param_array(irqs, int, &num_irqs, 0);
1392 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1393                  " addresses separated by commas.  Only use if an interface"
1394                  " has an interrupt.  Otherwise, set it to zero or leave"
1395                  " it blank.");
1396 module_param_array(regspacings, int, &num_regspacings, 0);
1397 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1398                  " and each successive register used by the interface.  For"
1399                  " instance, if the start address is 0xca2 and the spacing"
1400                  " is 2, then the second address is at 0xca4.  Defaults"
1401                  " to 1.");
1402 module_param_array(regsizes, int, &num_regsizes, 0);
1403 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1404                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1405                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1406                  " the 8-bit IPMI register has to be read from a larger"
1407                  " register.");
1408 module_param_array(regshifts, int, &num_regshifts, 0);
1409 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1410                  " IPMI register, in bits.  For instance, if the data"
1411                  " is read from a 32-bit word and the IPMI data is in"
1412                  " bit 8-15, then the shift would be 8");
1413 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1414 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1415                  " the controller.  Normally this is 0x20, but can be"
1416                  " overridden by this parm.  This is an array indexed"
1417                  " by interface number.");
1418 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1419 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1420                  " disabled(0).  Normally the IPMI driver auto-detects"
1421                  " this, but the value may be overridden by this parm.");
1422 module_param(unload_when_empty, bool, 0);
1423 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1424                  " specified or found, default is 1.  Setting to 0"
1425                  " is useful for hot add of devices using hotmod.");
1426 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1427 MODULE_PARM_DESC(kipmid_max_busy_us,
1428                  "Max time (in microseconds) to busy-wait for IPMI data before"
1429                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1430                  " if kipmid is using up a lot of CPU time.");
1431 
1432 
1433 static void std_irq_cleanup(struct smi_info *info)
1434 {
1435         if (info->si_type == SI_BT)
1436                 /* Disable the interrupt in the BT interface. */
1437                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1438         free_irq(info->irq, info);
1439 }
1440 
1441 static int std_irq_setup(struct smi_info *info)
1442 {
1443         int rv;
1444 
1445         if (!info->irq)
1446                 return 0;
1447 
1448         if (info->si_type == SI_BT) {
1449                 rv = request_irq(info->irq,
1450                                  si_bt_irq_handler,
1451                                  IRQF_SHARED,
1452                                  DEVICE_NAME,
1453                                  info);
1454                 if (!rv)
1455                         /* Enable the interrupt in the BT interface. */
1456                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1457                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1458         } else
1459                 rv = request_irq(info->irq,
1460                                  si_irq_handler,
1461                                  IRQF_SHARED,
1462                                  DEVICE_NAME,
1463                                  info);
1464         if (rv) {
1465                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1466                          " running polled\n",
1467                          DEVICE_NAME, info->irq);
1468                 info->irq = 0;
1469         } else {
1470                 info->irq_cleanup = std_irq_cleanup;
1471                 dev_info(info->dev, "Using irq %d\n", info->irq);
1472         }
1473 
1474         return rv;
1475 }
1476 
1477 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1478 {
1479         unsigned int addr = io->addr_data;
1480 
1481         return inb(addr + (offset * io->regspacing));
1482 }
1483 
1484 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1485                       unsigned char b)
1486 {
1487         unsigned int addr = io->addr_data;
1488 
1489         outb(b, addr + (offset * io->regspacing));
1490 }
1491 
1492 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1493 {
1494         unsigned int addr = io->addr_data;
1495 
1496         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1497 }
1498 
1499 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1500                       unsigned char b)
1501 {
1502         unsigned int addr = io->addr_data;
1503 
1504         outw(b << io->regshift, addr + (offset * io->regspacing));
1505 }
1506 
1507 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1508 {
1509         unsigned int addr = io->addr_data;
1510 
1511         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1512 }
1513 
1514 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1515                       unsigned char b)
1516 {
1517         unsigned int addr = io->addr_data;
1518 
1519         outl(b << io->regshift, addr+(offset * io->regspacing));
1520 }
1521 
1522 static void port_cleanup(struct smi_info *info)
1523 {
1524         unsigned int addr = info->io.addr_data;
1525         int          idx;
1526 
1527         if (addr) {
1528                 for (idx = 0; idx < info->io_size; idx++)
1529                         release_region(addr + idx * info->io.regspacing,
1530                                        info->io.regsize);
1531         }
1532 }
1533 
1534 static int port_setup(struct smi_info *info)
1535 {
1536         unsigned int addr = info->io.addr_data;
1537         int          idx;
1538 
1539         if (!addr)
1540                 return -ENODEV;
1541 
1542         info->io_cleanup = port_cleanup;
1543 
1544         /*
1545          * Figure out the actual inb/inw/inl/etc routine to use based
1546          * upon the register size.
1547          */
1548         switch (info->io.regsize) {
1549         case 1:
1550                 info->io.inputb = port_inb;
1551                 info->io.outputb = port_outb;
1552                 break;
1553         case 2:
1554                 info->io.inputb = port_inw;
1555                 info->io.outputb = port_outw;
1556                 break;
1557         case 4:
1558                 info->io.inputb = port_inl;
1559                 info->io.outputb = port_outl;
1560                 break;
1561         default:
1562                 dev_warn(info->dev, "Invalid register size: %d\n",
1563                          info->io.regsize);
1564                 return -EINVAL;
1565         }
1566 
1567         /*
1568          * Some BIOSes reserve disjoint I/O regions in their ACPI
1569          * tables.  This causes problems when trying to register the
1570          * entire I/O region.  Therefore we must register each I/O
1571          * port separately.
1572          */
1573         for (idx = 0; idx < info->io_size; idx++) {
1574                 if (request_region(addr + idx * info->io.regspacing,
1575                                    info->io.regsize, DEVICE_NAME) == NULL) {
1576                         /* Undo allocations */
1577                         while (idx--) {
1578                                 release_region(addr + idx * info->io.regspacing,
1579                                                info->io.regsize);
1580                         }
1581                         return -EIO;
1582                 }
1583         }
1584         return 0;
1585 }
1586 
1587 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1588                                   unsigned int offset)
1589 {
1590         return readb((io->addr)+(offset * io->regspacing));
1591 }
1592 
1593 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1594                           unsigned char b)
1595 {
1596         writeb(b, (io->addr)+(offset * io->regspacing));
1597 }
1598 
1599 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1600                                   unsigned int offset)
1601 {
1602         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1603                 & 0xff;
1604 }
1605 
1606 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1607                           unsigned char b)
1608 {
1609         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1610 }
1611 
1612 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1613                                   unsigned int offset)
1614 {
1615         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1616                 & 0xff;
1617 }
1618 
1619 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1620                           unsigned char b)
1621 {
1622         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1623 }
1624 
1625 #ifdef readq
1626 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1627 {
1628         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1629                 & 0xff;
1630 }
1631 
1632 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1633                      unsigned char b)
1634 {
1635         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1636 }
1637 #endif
1638 
1639 static void mem_cleanup(struct smi_info *info)
1640 {
1641         unsigned long addr = info->io.addr_data;
1642         int           mapsize;
1643 
1644         if (info->io.addr) {
1645                 iounmap(info->io.addr);
1646 
1647                 mapsize = ((info->io_size * info->io.regspacing)
1648                            - (info->io.regspacing - info->io.regsize));
1649 
1650                 release_mem_region(addr, mapsize);
1651         }
1652 }
1653 
1654 static int mem_setup(struct smi_info *info)
1655 {
1656         unsigned long addr = info->io.addr_data;
1657         int           mapsize;
1658 
1659         if (!addr)
1660                 return -ENODEV;
1661 
1662         info->io_cleanup = mem_cleanup;
1663 
1664         /*
1665          * Figure out the actual readb/readw/readl/etc routine to use based
1666          * upon the register size.
1667          */
1668         switch (info->io.regsize) {
1669         case 1:
1670                 info->io.inputb = intf_mem_inb;
1671                 info->io.outputb = intf_mem_outb;
1672                 break;
1673         case 2:
1674                 info->io.inputb = intf_mem_inw;
1675                 info->io.outputb = intf_mem_outw;
1676                 break;
1677         case 4:
1678                 info->io.inputb = intf_mem_inl;
1679                 info->io.outputb = intf_mem_outl;
1680                 break;
1681 #ifdef readq
1682         case 8:
1683                 info->io.inputb = mem_inq;
1684                 info->io.outputb = mem_outq;
1685                 break;
1686 #endif
1687         default:
1688                 dev_warn(info->dev, "Invalid register size: %d\n",
1689                          info->io.regsize);
1690                 return -EINVAL;
1691         }
1692 
1693         /*
1694          * Calculate the total amount of memory to claim.  This is an
1695          * unusual looking calculation, but it avoids claiming any
1696          * more memory than it has to.  It will claim everything
1697          * between the first address to the end of the last full
1698          * register.
1699          */
1700         mapsize = ((info->io_size * info->io.regspacing)
1701                    - (info->io.regspacing - info->io.regsize));
1702 
1703         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1704                 return -EIO;
1705 
1706         info->io.addr = ioremap(addr, mapsize);
1707         if (info->io.addr == NULL) {
1708                 release_mem_region(addr, mapsize);
1709                 return -EIO;
1710         }
1711         return 0;
1712 }
1713 
1714 /*
1715  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1716  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1717  * Options are:
1718  *   rsp=<regspacing>
1719  *   rsi=<regsize>
1720  *   rsh=<regshift>
1721  *   irq=<irq>
1722  *   ipmb=<ipmb addr>
1723  */
1724 enum hotmod_op { HM_ADD, HM_REMOVE };
1725 struct hotmod_vals {
1726         char *name;
1727         int  val;
1728 };
1729 static struct hotmod_vals hotmod_ops[] = {
1730         { "add",        HM_ADD },
1731         { "remove",     HM_REMOVE },
1732         { NULL }
1733 };
1734 static struct hotmod_vals hotmod_si[] = {
1735         { "kcs",        SI_KCS },
1736         { "smic",       SI_SMIC },
1737         { "bt",         SI_BT },
1738         { NULL }
1739 };
1740 static struct hotmod_vals hotmod_as[] = {
1741         { "mem",        IPMI_MEM_ADDR_SPACE },
1742         { "i/o",        IPMI_IO_ADDR_SPACE },
1743         { NULL }
1744 };
1745 
1746 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1747 {
1748         char *s;
1749         int  i;
1750 
1751         s = strchr(*curr, ',');
1752         if (!s) {
1753                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1754                 return -EINVAL;
1755         }
1756         *s = '\0';
1757         s++;
1758         for (i = 0; v[i].name; i++) {
1759                 if (strcmp(*curr, v[i].name) == 0) {
1760                         *val = v[i].val;
1761                         *curr = s;
1762                         return 0;
1763                 }
1764         }
1765 
1766         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1767         return -EINVAL;
1768 }
1769 
1770 static int check_hotmod_int_op(const char *curr, const char *option,
1771                                const char *name, int *val)
1772 {
1773         char *n;
1774 
1775         if (strcmp(curr, name) == 0) {
1776                 if (!option) {
1777                         printk(KERN_WARNING PFX
1778                                "No option given for '%s'\n",
1779                                curr);
1780                         return -EINVAL;
1781                 }
1782                 *val = simple_strtoul(option, &n, 0);
1783                 if ((*n != '\0') || (*option == '\0')) {
1784                         printk(KERN_WARNING PFX
1785                                "Bad option given for '%s'\n",
1786                                curr);
1787                         return -EINVAL;
1788                 }
1789                 return 1;
1790         }
1791         return 0;
1792 }
1793 
1794 static struct smi_info *smi_info_alloc(void)
1795 {
1796         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1797 
1798         if (info)
1799                 spin_lock_init(&info->si_lock);
1800         return info;
1801 }
1802 
1803 static int hotmod_handler(const char *val, struct kernel_param *kp)
1804 {
1805         char *str = kstrdup(val, GFP_KERNEL);
1806         int  rv;
1807         char *next, *curr, *s, *n, *o;
1808         enum hotmod_op op;
1809         enum si_type si_type;
1810         int  addr_space;
1811         unsigned long addr;
1812         int regspacing;
1813         int regsize;
1814         int regshift;
1815         int irq;
1816         int ipmb;
1817         int ival;
1818         int len;
1819         struct smi_info *info;
1820 
1821         if (!str)
1822                 return -ENOMEM;
1823 
1824         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1825         len = strlen(str);
1826         ival = len - 1;
1827         while ((ival >= 0) && isspace(str[ival])) {
1828                 str[ival] = '\0';
1829                 ival--;
1830         }
1831 
1832         for (curr = str; curr; curr = next) {
1833                 regspacing = 1;
1834                 regsize = 1;
1835                 regshift = 0;
1836                 irq = 0;
1837                 ipmb = 0; /* Choose the default if not specified */
1838 
1839                 next = strchr(curr, ':');
1840                 if (next) {
1841                         *next = '\0';
1842                         next++;
1843                 }
1844 
1845                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1846                 if (rv)
1847                         break;
1848                 op = ival;
1849 
1850                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1851                 if (rv)
1852                         break;
1853                 si_type = ival;
1854 
1855                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1856                 if (rv)
1857                         break;
1858 
1859                 s = strchr(curr, ',');
1860                 if (s) {
1861                         *s = '\0';
1862                         s++;
1863                 }
1864                 addr = simple_strtoul(curr, &n, 0);
1865                 if ((*n != '\0') || (*curr == '\0')) {
1866                         printk(KERN_WARNING PFX "Invalid hotmod address"
1867                                " '%s'\n", curr);
1868                         break;
1869                 }
1870 
1871                 while (s) {
1872                         curr = s;
1873                         s = strchr(curr, ',');
1874                         if (s) {
1875                                 *s = '\0';
1876                                 s++;
1877                         }
1878                         o = strchr(curr, '=');
1879                         if (o) {
1880                                 *o = '\0';
1881                                 o++;
1882                         }
1883                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1884                         if (rv < 0)
1885                                 goto out;
1886                         else if (rv)
1887                                 continue;
1888                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1889                         if (rv < 0)
1890                                 goto out;
1891                         else if (rv)
1892                                 continue;
1893                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1894                         if (rv < 0)
1895                                 goto out;
1896                         else if (rv)
1897                                 continue;
1898                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1899                         if (rv < 0)
1900                                 goto out;
1901                         else if (rv)
1902                                 continue;
1903                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1904                         if (rv < 0)
1905                                 goto out;
1906                         else if (rv)
1907                                 continue;
1908 
1909                         rv = -EINVAL;
1910                         printk(KERN_WARNING PFX
1911                                "Invalid hotmod option '%s'\n",
1912                                curr);
1913                         goto out;
1914                 }
1915 
1916                 if (op == HM_ADD) {
1917                         info = smi_info_alloc();
1918                         if (!info) {
1919                                 rv = -ENOMEM;
1920                                 goto out;
1921                         }
1922 
1923                         info->addr_source = SI_HOTMOD;
1924                         info->si_type = si_type;
1925                         info->io.addr_data = addr;
1926                         info->io.addr_type = addr_space;
1927                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1928                                 info->io_setup = mem_setup;
1929                         else
1930                                 info->io_setup = port_setup;
1931 
1932                         info->io.addr = NULL;
1933                         info->io.regspacing = regspacing;
1934                         if (!info->io.regspacing)
1935                                 info->io.regspacing = DEFAULT_REGSPACING;
1936                         info->io.regsize = regsize;
1937                         if (!info->io.regsize)
1938                                 info->io.regsize = DEFAULT_REGSPACING;
1939                         info->io.regshift = regshift;
1940                         info->irq = irq;
1941                         if (info->irq)
1942                                 info->irq_setup = std_irq_setup;
1943                         info->slave_addr = ipmb;
1944 
1945                         rv = add_smi(info);
1946                         if (rv) {
1947                                 kfree(info);
1948                                 goto out;
1949                         }
1950                         rv = try_smi_init(info);
1951                         if (rv) {
1952                                 cleanup_one_si(info);
1953                                 goto out;
1954                         }
1955                 } else {
1956                         /* remove */
1957                         struct smi_info *e, *tmp_e;
1958 
1959                         mutex_lock(&smi_infos_lock);
1960                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1961                                 if (e->io.addr_type != addr_space)
1962                                         continue;
1963                                 if (e->si_type != si_type)
1964                                         continue;
1965                                 if (e->io.addr_data == addr)
1966                                         cleanup_one_si(e);
1967                         }
1968                         mutex_unlock(&smi_infos_lock);
1969                 }
1970         }
1971         rv = len;
1972  out:
1973         kfree(str);
1974         return rv;
1975 }
1976 
1977 static int hardcode_find_bmc(void)
1978 {
1979         int ret = -ENODEV;
1980         int             i;
1981         struct smi_info *info;
1982 
1983         for (i = 0; i < SI_MAX_PARMS; i++) {
1984                 if (!ports[i] && !addrs[i])
1985                         continue;
1986 
1987                 info = smi_info_alloc();
1988                 if (!info)
1989                         return -ENOMEM;
1990 
1991                 info->addr_source = SI_HARDCODED;
1992                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1993 
1994                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1995                         info->si_type = SI_KCS;
1996                 } else if (strcmp(si_type[i], "smic") == 0) {
1997                         info->si_type = SI_SMIC;
1998                 } else if (strcmp(si_type[i], "bt") == 0) {
1999                         info->si_type = SI_BT;
2000                 } else {
2001                         printk(KERN_WARNING PFX "Interface type specified "
2002                                "for interface %d, was invalid: %s\n",
2003                                i, si_type[i]);
2004                         kfree(info);
2005                         continue;
2006                 }
2007 
2008                 if (ports[i]) {
2009                         /* An I/O port */
2010                         info->io_setup = port_setup;
2011                         info->io.addr_data = ports[i];
2012                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
2013                 } else if (addrs[i]) {
2014                         /* A memory port */
2015                         info->io_setup = mem_setup;
2016                         info->io.addr_data = addrs[i];
2017                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2018                 } else {
2019                         printk(KERN_WARNING PFX "Interface type specified "
2020                                "for interface %d, but port and address were "
2021                                "not set or set to zero.\n", i);
2022                         kfree(info);
2023                         continue;
2024                 }
2025 
2026                 info->io.addr = NULL;
2027                 info->io.regspacing = regspacings[i];
2028                 if (!info->io.regspacing)
2029                         info->io.regspacing = DEFAULT_REGSPACING;
2030                 info->io.regsize = regsizes[i];
2031                 if (!info->io.regsize)
2032                         info->io.regsize = DEFAULT_REGSPACING;
2033                 info->io.regshift = regshifts[i];
2034                 info->irq = irqs[i];
2035                 if (info->irq)
2036                         info->irq_setup = std_irq_setup;
2037                 info->slave_addr = slave_addrs[i];
2038 
2039                 if (!add_smi(info)) {
2040                         if (try_smi_init(info))
2041                                 cleanup_one_si(info);
2042                         ret = 0;
2043                 } else {
2044                         kfree(info);
2045                 }
2046         }
2047         return ret;
2048 }
2049 
2050 #ifdef CONFIG_ACPI
2051 
2052 #include <linux/acpi.h>
2053 
2054 /*
2055  * Once we get an ACPI failure, we don't try any more, because we go
2056  * through the tables sequentially.  Once we don't find a table, there
2057  * are no more.
2058  */
2059 static int acpi_failure;
2060 
2061 /* For GPE-type interrupts. */
2062 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2063         u32 gpe_number, void *context)
2064 {
2065         struct smi_info *smi_info = context;
2066         unsigned long   flags;
2067 
2068         spin_lock_irqsave(&(smi_info->si_lock), flags);
2069 
2070         smi_inc_stat(smi_info, interrupts);
2071 
2072         debug_timestamp("ACPI_GPE");
2073 
2074         smi_event_handler(smi_info, 0);
2075         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2076 
2077         return ACPI_INTERRUPT_HANDLED;
2078 }
2079 
2080 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2081 {
2082         if (!info->irq)
2083                 return;
2084 
2085         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2086 }
2087 
2088 static int acpi_gpe_irq_setup(struct smi_info *info)
2089 {
2090         acpi_status status;
2091 
2092         if (!info->irq)
2093                 return 0;
2094 
2095         status = acpi_install_gpe_handler(NULL,
2096                                           info->irq,
2097                                           ACPI_GPE_LEVEL_TRIGGERED,
2098                                           &ipmi_acpi_gpe,
2099                                           info);
2100         if (status != AE_OK) {
2101                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2102                          " running polled\n", DEVICE_NAME, info->irq);
2103                 info->irq = 0;
2104                 return -EINVAL;
2105         } else {
2106                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2107                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2108                 return 0;
2109         }
2110 }
2111 
2112 /*
2113  * Defined at
2114  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2115  */
2116 struct SPMITable {
2117         s8      Signature[4];
2118         u32     Length;
2119         u8      Revision;
2120         u8      Checksum;
2121         s8      OEMID[6];
2122         s8      OEMTableID[8];
2123         s8      OEMRevision[4];
2124         s8      CreatorID[4];
2125         s8      CreatorRevision[4];
2126         u8      InterfaceType;
2127         u8      IPMIlegacy;
2128         s16     SpecificationRevision;
2129 
2130         /*
2131          * Bit 0 - SCI interrupt supported
2132          * Bit 1 - I/O APIC/SAPIC
2133          */
2134         u8      InterruptType;
2135 
2136         /*
2137          * If bit 0 of InterruptType is set, then this is the SCI
2138          * interrupt in the GPEx_STS register.
2139          */
2140         u8      GPE;
2141 
2142         s16     Reserved;
2143 
2144         /*
2145          * If bit 1 of InterruptType is set, then this is the I/O
2146          * APIC/SAPIC interrupt.
2147          */
2148         u32     GlobalSystemInterrupt;
2149 
2150         /* The actual register address. */
2151         struct acpi_generic_address addr;
2152 
2153         u8      UID[4];
2154 
2155         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2156 };
2157 
2158 static int try_init_spmi(struct SPMITable *spmi)
2159 {
2160         struct smi_info  *info;
2161         int rv;
2162 
2163         if (spmi->IPMIlegacy != 1) {
2164                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2165                 return -ENODEV;
2166         }
2167 
2168         info = smi_info_alloc();
2169         if (!info) {
2170                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2171                 return -ENOMEM;
2172         }
2173 
2174         info->addr_source = SI_SPMI;
2175         printk(KERN_INFO PFX "probing via SPMI\n");
2176 
2177         /* Figure out the interface type. */
2178         switch (spmi->InterfaceType) {
2179         case 1: /* KCS */
2180                 info->si_type = SI_KCS;
2181                 break;
2182         case 2: /* SMIC */
2183                 info->si_type = SI_SMIC;
2184                 break;
2185         case 3: /* BT */
2186                 info->si_type = SI_BT;
2187                 break;
2188         case 4: /* SSIF, just ignore */
2189                 kfree(info);
2190                 return -EIO;
2191         default:
2192                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2193                        spmi->InterfaceType);
2194                 kfree(info);
2195                 return -EIO;
2196         }
2197 
2198         if (spmi->InterruptType & 1) {
2199                 /* We've got a GPE interrupt. */
2200                 info->irq = spmi->GPE;
2201                 info->irq_setup = acpi_gpe_irq_setup;
2202         } else if (spmi->InterruptType & 2) {
2203                 /* We've got an APIC/SAPIC interrupt. */
2204                 info->irq = spmi->GlobalSystemInterrupt;
2205                 info->irq_setup = std_irq_setup;
2206         } else {
2207                 /* Use the default interrupt setting. */
2208                 info->irq = 0;
2209                 info->irq_setup = NULL;
2210         }
2211 
2212         if (spmi->addr.bit_width) {
2213                 /* A (hopefully) properly formed register bit width. */
2214                 info->io.regspacing = spmi->addr.bit_width / 8;
2215         } else {
2216                 info->io.regspacing = DEFAULT_REGSPACING;
2217         }
2218         info->io.regsize = info->io.regspacing;
2219         info->io.regshift = spmi->addr.bit_offset;
2220 
2221         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2222                 info->io_setup = mem_setup;
2223                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2224         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2225                 info->io_setup = port_setup;
2226                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2227         } else {
2228                 kfree(info);
2229                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2230                 return -EIO;
2231         }
2232         info->io.addr_data = spmi->addr.address;
2233 
2234         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2235                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2236                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2237                  info->irq);
2238 
2239         rv = add_smi(info);
2240         if (rv)
2241                 kfree(info);
2242 
2243         return rv;
2244 }
2245 
2246 static void spmi_find_bmc(void)
2247 {
2248         acpi_status      status;
2249         struct SPMITable *spmi;
2250         int              i;
2251 
2252         if (acpi_disabled)
2253                 return;
2254 
2255         if (acpi_failure)
2256                 return;
2257 
2258         for (i = 0; ; i++) {
2259                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2260                                         (struct acpi_table_header **)&spmi);
2261                 if (status != AE_OK)
2262                         return;
2263 
2264                 try_init_spmi(spmi);
2265         }
2266 }
2267 #endif
2268 
2269 #ifdef CONFIG_DMI
2270 struct dmi_ipmi_data {
2271         u8              type;
2272         u8              addr_space;
2273         unsigned long   base_addr;
2274         u8              irq;
2275         u8              offset;
2276         u8              slave_addr;
2277 };
2278 
2279 static int decode_dmi(const struct dmi_header *dm,
2280                                 struct dmi_ipmi_data *dmi)
2281 {
2282         const u8        *data = (const u8 *)dm;
2283         unsigned long   base_addr;
2284         u8              reg_spacing;
2285         u8              len = dm->length;
2286 
2287         dmi->type = data[4];
2288 
2289         memcpy(&base_addr, data+8, sizeof(unsigned long));
2290         if (len >= 0x11) {
2291                 if (base_addr & 1) {
2292                         /* I/O */
2293                         base_addr &= 0xFFFE;
2294                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2295                 } else
2296                         /* Memory */
2297                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2298 
2299                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2300                    is odd. */
2301                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2302 
2303                 dmi->irq = data[0x11];
2304 
2305                 /* The top two bits of byte 0x10 hold the register spacing. */
2306                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2307                 switch (reg_spacing) {
2308                 case 0x00: /* Byte boundaries */
2309                     dmi->offset = 1;
2310                     break;
2311                 case 0x01: /* 32-bit boundaries */
2312                     dmi->offset = 4;
2313                     break;
2314                 case 0x02: /* 16-byte boundaries */
2315                     dmi->offset = 16;
2316                     break;
2317                 default:
2318                     /* Some other interface, just ignore it. */
2319                     return -EIO;
2320                 }
2321         } else {
2322                 /* Old DMI spec. */
2323                 /*
2324                  * Note that technically, the lower bit of the base
2325                  * address should be 1 if the address is I/O and 0 if
2326                  * the address is in memory.  So many systems get that
2327                  * wrong (and all that I have seen are I/O) so we just
2328                  * ignore that bit and assume I/O.  Systems that use
2329                  * memory should use the newer spec, anyway.
2330                  */
2331                 dmi->base_addr = base_addr & 0xfffe;
2332                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2333                 dmi->offset = 1;
2334         }
2335 
2336         dmi->slave_addr = data[6];
2337 
2338         return 0;
2339 }
2340 
2341 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2342 {
2343         struct smi_info *info;
2344 
2345         info = smi_info_alloc();
2346         if (!info) {
2347                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2348                 return;
2349         }
2350 
2351         info->addr_source = SI_SMBIOS;
2352         printk(KERN_INFO PFX "probing via SMBIOS\n");
2353 
2354         switch (ipmi_data->type) {
2355         case 0x01: /* KCS */
2356                 info->si_type = SI_KCS;
2357                 break;
2358         case 0x02: /* SMIC */
2359                 info->si_type = SI_SMIC;
2360                 break;
2361         case 0x03: /* BT */
2362                 info->si_type = SI_BT;
2363                 break;
2364         default:
2365                 kfree(info);
2366                 return;
2367         }
2368 
2369         switch (ipmi_data->addr_space) {
2370         case IPMI_MEM_ADDR_SPACE:
2371                 info->io_setup = mem_setup;
2372                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2373                 break;
2374 
2375         case IPMI_IO_ADDR_SPACE:
2376                 info->io_setup = port_setup;
2377                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2378                 break;
2379 
2380         default:
2381                 kfree(info);
2382                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2383                        ipmi_data->addr_space);
2384                 return;
2385         }
2386         info->io.addr_data = ipmi_data->base_addr;
2387 
2388         info->io.regspacing = ipmi_data->offset;
2389         if (!info->io.regspacing)
2390                 info->io.regspacing = DEFAULT_REGSPACING;
2391         info->io.regsize = DEFAULT_REGSPACING;
2392         info->io.regshift = 0;
2393 
2394         info->slave_addr = ipmi_data->slave_addr;
2395 
2396         info->irq = ipmi_data->irq;
2397         if (info->irq)
2398                 info->irq_setup = std_irq_setup;
2399 
2400         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2401                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2402                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2403                  info->irq);
2404 
2405         if (add_smi(info))
2406                 kfree(info);
2407 }
2408 
2409 static void dmi_find_bmc(void)
2410 {
2411         const struct dmi_device *dev = NULL;
2412         struct dmi_ipmi_data data;
2413         int                  rv;
2414 
2415         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2416                 memset(&data, 0, sizeof(data));
2417                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2418                                 &data);
2419                 if (!rv)
2420                         try_init_dmi(&data);
2421         }
2422 }
2423 #endif /* CONFIG_DMI */
2424 
2425 #ifdef CONFIG_PCI
2426 
2427 #define PCI_ERMC_CLASSCODE              0x0C0700
2428 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2429 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2430 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2431 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2432 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2433 
2434 #define PCI_HP_VENDOR_ID    0x103C
2435 #define PCI_MMC_DEVICE_ID   0x121A
2436 #define PCI_MMC_ADDR_CW     0x10
2437 
2438 static void ipmi_pci_cleanup(struct smi_info *info)
2439 {
2440         struct pci_dev *pdev = info->addr_source_data;
2441 
2442         pci_disable_device(pdev);
2443 }
2444 
2445 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2446 {
2447         if (info->si_type == SI_KCS) {
2448                 unsigned char   status;
2449                 int             regspacing;
2450 
2451                 info->io.regsize = DEFAULT_REGSIZE;
2452                 info->io.regshift = 0;
2453                 info->io_size = 2;
2454                 info->handlers = &kcs_smi_handlers;
2455 
2456                 /* detect 1, 4, 16byte spacing */
2457                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2458                         info->io.regspacing = regspacing;
2459                         if (info->io_setup(info)) {
2460                                 dev_err(info->dev,
2461                                         "Could not setup I/O space\n");
2462                                 return DEFAULT_REGSPACING;
2463                         }
2464                         /* write invalid cmd */
2465                         info->io.outputb(&info->io, 1, 0x10);
2466                         /* read status back */
2467                         status = info->io.inputb(&info->io, 1);
2468                         info->io_cleanup(info);
2469                         if (status)
2470                                 return regspacing;
2471                         regspacing *= 4;
2472                 }
2473         }
2474         return DEFAULT_REGSPACING;
2475 }
2476 
2477 static int ipmi_pci_probe(struct pci_dev *pdev,
2478                                     const struct pci_device_id *ent)
2479 {
2480         int rv;
2481         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2482         struct smi_info *info;
2483 
2484         info = smi_info_alloc();
2485         if (!info)
2486                 return -ENOMEM;
2487 
2488         info->addr_source = SI_PCI;
2489         dev_info(&pdev->dev, "probing via PCI");
2490 
2491         switch (class_type) {
2492         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2493                 info->si_type = SI_SMIC;
2494                 break;
2495 
2496         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2497                 info->si_type = SI_KCS;
2498                 break;
2499 
2500         case PCI_ERMC_CLASSCODE_TYPE_BT:
2501                 info->si_type = SI_BT;
2502                 break;
2503 
2504         default:
2505                 kfree(info);
2506                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2507                 return -ENOMEM;
2508         }
2509 
2510         rv = pci_enable_device(pdev);
2511         if (rv) {
2512                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2513                 kfree(info);
2514                 return rv;
2515         }
2516 
2517         info->addr_source_cleanup = ipmi_pci_cleanup;
2518         info->addr_source_data = pdev;
2519 
2520         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2521                 info->io_setup = port_setup;
2522                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2523         } else {
2524                 info->io_setup = mem_setup;
2525                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2526         }
2527         info->io.addr_data = pci_resource_start(pdev, 0);
2528 
2529         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2530         info->io.regsize = DEFAULT_REGSIZE;
2531         info->io.regshift = 0;
2532 
2533         info->irq = pdev->irq;
2534         if (info->irq)
2535                 info->irq_setup = std_irq_setup;
2536 
2537         info->dev = &pdev->dev;
2538         pci_set_drvdata(pdev, info);
2539 
2540         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2541                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2542                 info->irq);
2543 
2544         rv = add_smi(info);
2545         if (rv) {
2546                 kfree(info);
2547                 pci_disable_device(pdev);
2548         }
2549 
2550         return rv;
2551 }
2552 
2553 static void ipmi_pci_remove(struct pci_dev *pdev)
2554 {
2555         struct smi_info *info = pci_get_drvdata(pdev);
2556         cleanup_one_si(info);
2557         pci_disable_device(pdev);
2558 }
2559 
2560 static const struct pci_device_id ipmi_pci_devices[] = {
2561         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2562         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2563         { 0, }
2564 };
2565 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2566 
2567 static struct pci_driver ipmi_pci_driver = {
2568         .name =         DEVICE_NAME,
2569         .id_table =     ipmi_pci_devices,
2570         .probe =        ipmi_pci_probe,
2571         .remove =       ipmi_pci_remove,
2572 };
2573 #endif /* CONFIG_PCI */
2574 
2575 #ifdef CONFIG_OF
2576 static const struct of_device_id of_ipmi_match[] = {
2577         { .type = "ipmi", .compatible = "ipmi-kcs",
2578           .data = (void *)(unsigned long) SI_KCS },
2579         { .type = "ipmi", .compatible = "ipmi-smic",
2580           .data = (void *)(unsigned long) SI_SMIC },
2581         { .type = "ipmi", .compatible = "ipmi-bt",
2582           .data = (void *)(unsigned long) SI_BT },
2583         {},
2584 };
2585 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2586 
2587 static int of_ipmi_probe(struct platform_device *dev)
2588 {
2589         const struct of_device_id *match;
2590         struct smi_info *info;
2591         struct resource resource;
2592         const __be32 *regsize, *regspacing, *regshift;
2593         struct device_node *np = dev->dev.of_node;
2594         int ret;
2595         int proplen;
2596 
2597         dev_info(&dev->dev, "probing via device tree\n");
2598 
2599         match = of_match_device(of_ipmi_match, &dev->dev);
2600         if (!match)
2601                 return -ENODEV;
2602 
2603         if (!of_device_is_available(np))
2604                 return -EINVAL;
2605 
2606         ret = of_address_to_resource(np, 0, &resource);
2607         if (ret) {
2608                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2609                 return ret;
2610         }
2611 
2612         regsize = of_get_property(np, "reg-size", &proplen);
2613         if (regsize && proplen != 4) {
2614                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2615                 return -EINVAL;
2616         }
2617 
2618         regspacing = of_get_property(np, "reg-spacing", &proplen);
2619         if (regspacing && proplen != 4) {
2620                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2621                 return -EINVAL;
2622         }
2623 
2624         regshift = of_get_property(np, "reg-shift", &proplen);
2625         if (regshift && proplen != 4) {
2626                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2627                 return -EINVAL;
2628         }
2629 
2630         info = smi_info_alloc();
2631 
2632         if (!info) {
2633                 dev_err(&dev->dev,
2634                         "could not allocate memory for OF probe\n");
2635                 return -ENOMEM;
2636         }
2637 
2638         info->si_type           = (enum si_type) match->data;
2639         info->addr_source       = SI_DEVICETREE;
2640         info->irq_setup         = std_irq_setup;
2641 
2642         if (resource.flags & IORESOURCE_IO) {
2643                 info->io_setup          = port_setup;
2644                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2645         } else {
2646                 info->io_setup          = mem_setup;
2647                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2648         }
2649 
2650         info->io.addr_data      = resource.start;
2651 
2652         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2653         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2654         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2655 
2656         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2657         info->dev               = &dev->dev;
2658 
2659         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2660                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2661                 info->irq);
2662 
2663         dev_set_drvdata(&dev->dev, info);
2664 
2665         ret = add_smi(info);
2666         if (ret) {
2667                 kfree(info);
2668                 return ret;
2669         }
2670         return 0;
2671 }
2672 #else
2673 #define of_ipmi_match NULL
2674 static int of_ipmi_probe(struct platform_device *dev)
2675 {
2676         return -ENODEV;
2677 }
2678 #endif
2679 
2680 #ifdef CONFIG_ACPI
2681 static int acpi_ipmi_probe(struct platform_device *dev)
2682 {
2683         struct smi_info *info;
2684         struct resource *res, *res_second;
2685         acpi_handle handle;
2686         acpi_status status;
2687         unsigned long long tmp;
2688         int rv = -EINVAL;
2689 
2690         handle = ACPI_HANDLE(&dev->dev);
2691         if (!handle)
2692                 return -ENODEV;
2693 
2694         info = smi_info_alloc();
2695         if (!info)
2696                 return -ENOMEM;
2697 
2698         info->addr_source = SI_ACPI;
2699         dev_info(&dev->dev, PFX "probing via ACPI\n");
2700 
2701         info->addr_info.acpi_info.acpi_handle = handle;
2702 
2703         /* _IFT tells us the interface type: KCS, BT, etc */
2704         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2705         if (ACPI_FAILURE(status)) {
2706                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2707                 goto err_free;
2708         }
2709 
2710         switch (tmp) {
2711         case 1:
2712                 info->si_type = SI_KCS;
2713                 break;
2714         case 2:
2715                 info->si_type = SI_SMIC;
2716                 break;
2717         case 3:
2718                 info->si_type = SI_BT;
2719                 break;
2720         case 4: /* SSIF, just ignore */
2721                 rv = -ENODEV;
2722                 goto err_free;
2723         default:
2724                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2725                 goto err_free;
2726         }
2727 
2728         res = platform_get_resource(dev, IORESOURCE_IO, 0);
2729         if (res) {
2730                 info->io_setup = port_setup;
2731                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2732         } else {
2733                 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2734                 if (res) {
2735                         info->io_setup = mem_setup;
2736                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2737                 }
2738         }
2739         if (!res) {
2740                 dev_err(&dev->dev, "no I/O or memory address\n");
2741                 goto err_free;
2742         }
2743         info->io.addr_data = res->start;
2744 
2745         info->io.regspacing = DEFAULT_REGSPACING;
2746         res_second = platform_get_resource(dev,
2747                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2748                                         IORESOURCE_IO : IORESOURCE_MEM,
2749                                1);
2750         if (res_second) {
2751                 if (res_second->start > info->io.addr_data)
2752                         info->io.regspacing =
2753                                 res_second->start - info->io.addr_data;
2754         }
2755         info->io.regsize = DEFAULT_REGSPACING;
2756         info->io.regshift = 0;
2757 
2758         /* If _GPE exists, use it; otherwise use standard interrupts */
2759         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2760         if (ACPI_SUCCESS(status)) {
2761                 info->irq = tmp;
2762                 info->irq_setup = acpi_gpe_irq_setup;
2763         } else {
2764                 int irq = platform_get_irq(dev, 0);
2765 
2766                 if (irq > 0) {
2767                         info->irq = irq;
2768                         info->irq_setup = std_irq_setup;
2769                 }
2770         }
2771 
2772         info->dev = &dev->dev;
2773         platform_set_drvdata(dev, info);
2774 
2775         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2776                  res, info->io.regsize, info->io.regspacing,
2777                  info->irq);
2778 
2779         rv = add_smi(info);
2780         if (rv)
2781                 kfree(info);
2782 
2783         return rv;
2784 
2785 err_free:
2786         kfree(info);
2787         return rv;
2788 }
2789 
2790 static const struct acpi_device_id acpi_ipmi_match[] = {
2791         { "IPI0001", 0 },
2792         { },
2793 };
2794 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2795 #else
2796 static int acpi_ipmi_probe(struct platform_device *dev)
2797 {
2798         return -ENODEV;
2799 }
2800 #endif
2801 
2802 static int ipmi_probe(struct platform_device *dev)
2803 {
2804         if (of_ipmi_probe(dev) == 0)
2805                 return 0;
2806 
2807         return acpi_ipmi_probe(dev);
2808 }
2809 
2810 static int ipmi_remove(struct platform_device *dev)
2811 {
2812         struct smi_info *info = dev_get_drvdata(&dev->dev);
2813 
2814         cleanup_one_si(info);
2815         return 0;
2816 }
2817 
2818 static struct platform_driver ipmi_driver = {
2819         .driver = {
2820                 .name = DEVICE_NAME,
2821                 .of_match_table = of_ipmi_match,
2822                 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2823         },
2824         .probe          = ipmi_probe,
2825         .remove         = ipmi_remove,
2826 };
2827 
2828 #ifdef CONFIG_PARISC
2829 static int ipmi_parisc_probe(struct parisc_device *dev)
2830 {
2831         struct smi_info *info;
2832         int rv;
2833 
2834         info = smi_info_alloc();
2835 
2836         if (!info) {
2837                 dev_err(&dev->dev,
2838                         "could not allocate memory for PARISC probe\n");
2839                 return -ENOMEM;
2840         }
2841 
2842         info->si_type           = SI_KCS;
2843         info->addr_source       = SI_DEVICETREE;
2844         info->io_setup          = mem_setup;
2845         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2846         info->io.addr_data      = dev->hpa.start;
2847         info->io.regsize        = 1;
2848         info->io.regspacing     = 1;
2849         info->io.regshift       = 0;
2850         info->irq               = 0; /* no interrupt */
2851         info->irq_setup         = NULL;
2852         info->dev               = &dev->dev;
2853 
2854         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2855 
2856         dev_set_drvdata(&dev->dev, info);
2857 
2858         rv = add_smi(info);
2859         if (rv) {
2860                 kfree(info);
2861                 return rv;
2862         }
2863 
2864         return 0;
2865 }
2866 
2867 static int ipmi_parisc_remove(struct parisc_device *dev)
2868 {
2869         cleanup_one_si(dev_get_drvdata(&dev->dev));
2870         return 0;
2871 }
2872 
2873 static struct parisc_device_id ipmi_parisc_tbl[] = {
2874         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2875         { 0, }
2876 };
2877 
2878 static struct parisc_driver ipmi_parisc_driver = {
2879         .name =         "ipmi",
2880         .id_table =     ipmi_parisc_tbl,
2881         .probe =        ipmi_parisc_probe,
2882         .remove =       ipmi_parisc_remove,
2883 };
2884 #endif /* CONFIG_PARISC */
2885 
2886 static int wait_for_msg_done(struct smi_info *smi_info)
2887 {
2888         enum si_sm_result     smi_result;
2889 
2890         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2891         for (;;) {
2892                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2893                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2894                         schedule_timeout_uninterruptible(1);
2895                         smi_result = smi_info->handlers->event(
2896                                 smi_info->si_sm, jiffies_to_usecs(1));
2897                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2898                         smi_result = smi_info->handlers->event(
2899                                 smi_info->si_sm, 0);
2900                 } else
2901                         break;
2902         }
2903         if (smi_result == SI_SM_HOSED)
2904                 /*
2905                  * We couldn't get the state machine to run, so whatever's at
2906                  * the port is probably not an IPMI SMI interface.
2907                  */
2908                 return -ENODEV;
2909 
2910         return 0;
2911 }
2912 
2913 static int try_get_dev_id(struct smi_info *smi_info)
2914 {
2915         unsigned char         msg[2];
2916         unsigned char         *resp;
2917         unsigned long         resp_len;
2918         int                   rv = 0;
2919 
2920         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2921         if (!resp)
2922                 return -ENOMEM;
2923 
2924         /*
2925          * Do a Get Device ID command, since it comes back with some
2926          * useful info.
2927          */
2928         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2929         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2930         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2931 
2932         rv = wait_for_msg_done(smi_info);
2933         if (rv)
2934                 goto out;
2935 
2936         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2937                                                   resp, IPMI_MAX_MSG_LENGTH);
2938 
2939         /* Check and record info from the get device id, in case we need it. */
2940         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2941 
2942  out:
2943         kfree(resp);
2944         return rv;
2945 }
2946 
2947 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2948 {
2949         unsigned char         msg[3];
2950         unsigned char         *resp;
2951         unsigned long         resp_len;
2952         int                   rv;
2953 
2954         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2955         if (!resp)
2956                 return -ENOMEM;
2957 
2958         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2959         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2960         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2961 
2962         rv = wait_for_msg_done(smi_info);
2963         if (rv) {
2964                 dev_warn(smi_info->dev,
2965                          "Error getting response from get global enables command: %d\n",
2966                          rv);
2967                 goto out;
2968         }
2969 
2970         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2971                                                   resp, IPMI_MAX_MSG_LENGTH);
2972 
2973         if (resp_len < 4 ||
2974                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2975                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2976                         resp[2] != 0) {
2977                 dev_warn(smi_info->dev,
2978                          "Invalid return from get global enables command: %ld %x %x %x\n",
2979                          resp_len, resp[0], resp[1], resp[2]);
2980                 rv = -EINVAL;
2981                 goto out;
2982         } else {
2983                 *enables = resp[3];
2984         }
2985 
2986 out:
2987         kfree(resp);
2988         return rv;
2989 }
2990 
2991 /*
2992  * Returns 1 if it gets an error from the command.
2993  */
2994 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2995 {
2996         unsigned char         msg[3];
2997         unsigned char         *resp;
2998         unsigned long         resp_len;
2999         int                   rv;
3000 
3001         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3002         if (!resp)
3003                 return -ENOMEM;
3004 
3005         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3006         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3007         msg[2] = enables;
3008         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3009 
3010         rv = wait_for_msg_done(smi_info);
3011         if (rv) {
3012                 dev_warn(smi_info->dev,
3013                          "Error getting response from set global enables command: %d\n",
3014                          rv);
3015                 goto out;
3016         }
3017 
3018         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3019                                                   resp, IPMI_MAX_MSG_LENGTH);
3020 
3021         if (resp_len < 3 ||
3022                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3023                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3024                 dev_warn(smi_info->dev,
3025                          "Invalid return from set global enables command: %ld %x %x\n",
3026                          resp_len, resp[0], resp[1]);
3027                 rv = -EINVAL;
3028                 goto out;
3029         }
3030 
3031         if (resp[2] != 0)
3032                 rv = 1;
3033 
3034 out:
3035         kfree(resp);
3036         return rv;
3037 }
3038 
3039 /*
3040  * Some BMCs do not support clearing the receive irq bit in the global
3041  * enables (even if they don't support interrupts on the BMC).  Check
3042  * for this and handle it properly.
3043  */
3044 static void check_clr_rcv_irq(struct smi_info *smi_info)
3045 {
3046         u8 enables = 0;
3047         int rv;
3048 
3049         rv = get_global_enables(smi_info, &enables);
3050         if (!rv) {
3051                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3052                         /* Already clear, should work ok. */
3053                         return;
3054 
3055                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3056                 rv = set_global_enables(smi_info, enables);
3057         }
3058 
3059         if (rv < 0) {
3060                 dev_err(smi_info->dev,
3061                         "Cannot check clearing the rcv irq: %d\n", rv);
3062                 return;
3063         }
3064 
3065         if (rv) {
3066                 /*
3067                  * An error when setting the event buffer bit means
3068                  * clearing the bit is not supported.
3069                  */
3070                 dev_warn(smi_info->dev,
3071                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3072                 smi_info->cannot_disable_irq = true;
3073         }
3074 }
3075 
3076 /*
3077  * Some BMCs do not support setting the interrupt bits in the global
3078  * enables even if they support interrupts.  Clearly bad, but we can
3079  * compensate.
3080  */
3081 static void check_set_rcv_irq(struct smi_info *smi_info)
3082 {
3083         u8 enables = 0;
3084         int rv;
3085 
3086         if (!smi_info->irq)
3087                 return;
3088 
3089         rv = get_global_enables(smi_info, &enables);
3090         if (!rv) {
3091                 enables |= IPMI_BMC_RCV_MSG_INTR;
3092                 rv = set_global_enables(smi_info, enables);
3093         }
3094 
3095         if (rv < 0) {
3096                 dev_err(smi_info->dev,
3097                         "Cannot check setting the rcv irq: %d\n", rv);
3098                 return;
3099         }
3100 
3101         if (rv) {
3102                 /*
3103                  * An error when setting the event buffer bit means
3104                  * setting the bit is not supported.
3105                  */
3106                 dev_warn(smi_info->dev,
3107                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3108                 smi_info->cannot_disable_irq = true;
3109                 smi_info->irq_enable_broken = true;
3110         }
3111 }
3112 
3113 static int try_enable_event_buffer(struct smi_info *smi_info)
3114 {
3115         unsigned char         msg[3];
3116         unsigned char         *resp;
3117         unsigned long         resp_len;
3118         int                   rv = 0;
3119 
3120         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3121         if (!resp)
3122                 return -ENOMEM;
3123 
3124         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3125         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3126         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3127 
3128         rv = wait_for_msg_done(smi_info);
3129         if (rv) {
3130                 printk(KERN_WARNING PFX "Error getting response from get"
3131                        " global enables command, the event buffer is not"
3132                        " enabled.\n");
3133                 goto out;
3134         }
3135 
3136         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3137                                                   resp, IPMI_MAX_MSG_LENGTH);
3138 
3139         if (resp_len < 4 ||
3140                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3141                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3142                         resp[2] != 0) {
3143                 printk(KERN_WARNING PFX "Invalid return from get global"
3144                        " enables command, cannot enable the event buffer.\n");
3145                 rv = -EINVAL;
3146                 goto out;
3147         }
3148 
3149         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3150                 /* buffer is already enabled, nothing to do. */
3151                 smi_info->supports_event_msg_buff = true;
3152                 goto out;
3153         }
3154 
3155         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3156         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3157         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3158         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3159 
3160         rv = wait_for_msg_done(smi_info);
3161         if (rv) {
3162                 printk(KERN_WARNING PFX "Error getting response from set"
3163                        " global, enables command, the event buffer is not"
3164                        " enabled.\n");
3165                 goto out;
3166         }
3167 
3168         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3169                                                   resp, IPMI_MAX_MSG_LENGTH);
3170 
3171         if (resp_len < 3 ||
3172                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3173                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3174                 printk(KERN_WARNING PFX "Invalid return from get global,"
3175                        "enables command, not enable the event buffer.\n");
3176                 rv = -EINVAL;
3177                 goto out;
3178         }
3179 
3180         if (resp[2] != 0)
3181                 /*
3182                  * An error when setting the event buffer bit means
3183                  * that the event buffer is not supported.
3184                  */
3185                 rv = -ENOENT;
3186         else
3187                 smi_info->supports_event_msg_buff = true;
3188 
3189  out:
3190         kfree(resp);
3191         return rv;
3192 }
3193 
3194 static int smi_type_proc_show(struct seq_file *m, void *v)
3195 {
3196         struct smi_info *smi = m->private;
3197 
3198         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3199 
3200         return 0;
3201 }
3202 
3203 static int smi_type_proc_open(struct inode *inode, struct file *file)
3204 {
3205         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3206 }
3207 
3208 static const struct file_operations smi_type_proc_ops = {
3209         .open           = smi_type_proc_open,
3210         .read           = seq_read,
3211         .llseek         = seq_lseek,
3212         .release        = single_release,
3213 };
3214 
3215 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3216 {
3217         struct smi_info *smi = m->private;
3218 
3219         seq_printf(m, "interrupts_enabled:    %d\n",
3220                        smi->irq && !smi->interrupt_disabled);
3221         seq_printf(m, "short_timeouts:        %u\n",
3222                        smi_get_stat(smi, short_timeouts));
3223         seq_printf(m, "long_timeouts:         %u\n",
3224                        smi_get_stat(smi, long_timeouts));
3225         seq_printf(m, "idles:                 %u\n",
3226                        smi_get_stat(smi, idles));
3227         seq_printf(m, "interrupts:            %u\n",
3228                        smi_get_stat(smi, interrupts));
3229         seq_printf(m, "attentions:            %u\n",
3230                        smi_get_stat(smi, attentions));
3231         seq_printf(m, "flag_fetches:          %u\n",
3232                        smi_get_stat(smi, flag_fetches));
3233         seq_printf(m, "hosed_count:           %u\n",
3234                        smi_get_stat(smi, hosed_count));
3235         seq_printf(m, "complete_transactions: %u\n",
3236                        smi_get_stat(smi, complete_transactions));
3237         seq_printf(m, "events:                %u\n",
3238                        smi_get_stat(smi, events));
3239         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3240                        smi_get_stat(smi, watchdog_pretimeouts));
3241         seq_printf(m, "incoming_messages:     %u\n",
3242                        smi_get_stat(smi, incoming_messages));
3243         return 0;
3244 }
3245 
3246 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3247 {
3248         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3249 }
3250 
3251 static const struct file_operations smi_si_stats_proc_ops = {
3252         .open           = smi_si_stats_proc_open,
3253         .read           = seq_read,
3254         .llseek         = seq_lseek,
3255         .release        = single_release,
3256 };
3257 
3258 static int smi_params_proc_show(struct seq_file *m, void *v)
3259 {
3260         struct smi_info *smi = m->private;
3261 
3262         seq_printf(m,
3263                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3264                    si_to_str[smi->si_type],
3265                    addr_space_to_str[smi->io.addr_type],
3266                    smi->io.addr_data,
3267                    smi->io.regspacing,
3268                    smi->io.regsize,
3269                    smi->io.regshift,
3270                    smi->irq,
3271                    smi->slave_addr);
3272 
3273         return 0;
3274 }
3275 
3276 static int smi_params_proc_open(struct inode *inode, struct file *file)
3277 {
3278         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3279 }
3280 
3281 static const struct file_operations smi_params_proc_ops = {
3282         .open           = smi_params_proc_open,
3283         .read           = seq_read,
3284         .llseek         = seq_lseek,
3285         .release        = single_release,
3286 };
3287 
3288 /*
3289  * oem_data_avail_to_receive_msg_avail
3290  * @info - smi_info structure with msg_flags set
3291  *
3292  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3293  * Returns 1 indicating need to re-run handle_flags().
3294  */
3295 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3296 {
3297         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3298                                RECEIVE_MSG_AVAIL);
3299         return 1;
3300 }
3301 
3302 /*
3303  * setup_dell_poweredge_oem_data_handler
3304  * @info - smi_info.device_id must be populated
3305  *
3306  * Systems that match, but have firmware version < 1.40 may assert
3307  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3308  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3309  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3310  * as RECEIVE_MSG_AVAIL instead.
3311  *
3312  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3313  * assert the OEM[012] bits, and if it did, the driver would have to
3314  * change to handle that properly, we don't actually check for the
3315  * firmware version.
3316  * Device ID = 0x20                BMC on PowerEdge 8G servers
3317  * Device Revision = 0x80
3318  * Firmware Revision1 = 0x01       BMC version 1.40
3319  * Firmware Revision2 = 0x40       BCD encoded
3320  * IPMI Version = 0x51             IPMI 1.5
3321  * Manufacturer ID = A2 02 00      Dell IANA
3322  *
3323  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3324  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3325  *
3326  */
3327 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3328 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3329 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3330 #define DELL_IANA_MFR_ID 0x0002a2
3331 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3332 {
3333         struct ipmi_device_id *id = &smi_info->device_id;
3334         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3335                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3336                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3337                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3338                         smi_info->oem_data_avail_handler =
3339                                 oem_data_avail_to_receive_msg_avail;
3340                 } else if (ipmi_version_major(id) < 1 ||
3341                            (ipmi_version_major(id) == 1 &&
3342                             ipmi_version_minor(id) < 5)) {
3343                         smi_info->oem_data_avail_handler =
3344                                 oem_data_avail_to_receive_msg_avail;
3345                 }
3346         }
3347 }
3348 
3349 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3350 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3351 {
3352         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3353 
3354         /* Make it a response */
3355         msg->rsp[0] = msg->data[0] | 4;
3356         msg->rsp[1] = msg->data[1];
3357         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3358         msg->rsp_size = 3;
3359         smi_info->curr_msg = NULL;
3360         deliver_recv_msg(smi_info, msg);
3361 }
3362 
3363 /*
3364  * dell_poweredge_bt_xaction_handler
3365  * @info - smi_info.device_id must be populated
3366  *
3367  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3368  * not respond to a Get SDR command if the length of the data
3369  * requested is exactly 0x3A, which leads to command timeouts and no
3370  * data returned.  This intercepts such commands, and causes userspace
3371  * callers to try again with a different-sized buffer, which succeeds.
3372  */
3373 
3374 #define STORAGE_NETFN 0x0A
3375 #define STORAGE_CMD_GET_SDR 0x23
3376 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3377                                              unsigned long unused,
3378                                              void *in)
3379 {
3380         struct smi_info *smi_info = in;
3381         unsigned char *data = smi_info->curr_msg->data;
3382         unsigned int size   = smi_info->curr_msg->data_size;
3383         if (size >= 8 &&
3384             (data[0]>>2) == STORAGE_NETFN &&
3385             data[1] == STORAGE_CMD_GET_SDR &&
3386             data[7] == 0x3A) {
3387                 return_hosed_msg_badsize(smi_info);
3388                 return NOTIFY_STOP;
3389         }
3390         return NOTIFY_DONE;
3391 }
3392 
3393 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3394         .notifier_call  = dell_poweredge_bt_xaction_handler,
3395 };
3396 
3397 /*
3398  * setup_dell_poweredge_bt_xaction_handler
3399  * @info - smi_info.device_id must be filled in already
3400  *
3401  * Fills in smi_info.device_id.start_transaction_pre_hook
3402  * when we know what function to use there.
3403  */
3404 static void
3405 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3406 {
3407         struct ipmi_device_id *id = &smi_info->device_id;
3408         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3409             smi_info->si_type == SI_BT)
3410                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3411 }
3412 
3413 /*
3414  * setup_oem_data_handler
3415  * @info - smi_info.device_id must be filled in already
3416  *
3417  * Fills in smi_info.device_id.oem_data_available_handler
3418  * when we know what function to use there.
3419  */
3420 
3421 static void setup_oem_data_handler(struct smi_info *smi_info)
3422 {
3423         setup_dell_poweredge_oem_data_handler(smi_info);
3424 }
3425 
3426 static void setup_xaction_handlers(struct smi_info *smi_info)
3427 {
3428         setup_dell_poweredge_bt_xaction_handler(smi_info);
3429 }
3430 
3431 static void check_for_broken_irqs(struct smi_info *smi_info)
3432 {
3433         check_clr_rcv_irq(smi_info);
3434         check_set_rcv_irq(smi_info);
3435 }
3436 
3437 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3438 {
3439         if (smi_info->thread != NULL)
3440                 kthread_stop(smi_info->thread);
3441         if (smi_info->timer_running)
3442                 del_timer_sync(&smi_info->si_timer);
3443 }
3444 
3445 static const struct ipmi_default_vals
3446 {
3447         int type;
3448         int port;
3449 } ipmi_defaults[] =
3450 {
3451         { .type = SI_KCS, .port = 0xca2 },
3452         { .type = SI_SMIC, .port = 0xca9 },
3453         { .type = SI_BT, .port = 0xe4 },
3454         { .port = 0 }
3455 };
3456 
3457 static void default_find_bmc(void)
3458 {
3459         struct smi_info *info;
3460         int             i;
3461 
3462         for (i = 0; ; i++) {
3463                 if (!ipmi_defaults[i].port)
3464                         break;
3465 #ifdef CONFIG_PPC
3466                 if (check_legacy_ioport(ipmi_defaults[i].port))
3467                         continue;
3468 #endif
3469                 info = smi_info_alloc();
3470                 if (!info)
3471                         return;
3472 
3473                 info->addr_source = SI_DEFAULT;
3474 
3475                 info->si_type = ipmi_defaults[i].type;
3476                 info->io_setup = port_setup;
3477                 info->io.addr_data = ipmi_defaults[i].port;
3478                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3479 
3480                 info->io.addr = NULL;
3481                 info->io.regspacing = DEFAULT_REGSPACING;
3482                 info->io.regsize = DEFAULT_REGSPACING;
3483                 info->io.regshift = 0;
3484 
3485                 if (add_smi(info) == 0) {
3486                         if ((try_smi_init(info)) == 0) {
3487                                 /* Found one... */
3488                                 printk(KERN_INFO PFX "Found default %s"
3489                                 " state machine at %s address 0x%lx\n",
3490                                 si_to_str[info->si_type],
3491                                 addr_space_to_str[info->io.addr_type],
3492                                 info->io.addr_data);
3493                         } else
3494                                 cleanup_one_si(info);
3495                 } else {
3496                         kfree(info);
3497                 }
3498         }
3499 }
3500 
3501 static int is_new_interface(struct smi_info *info)
3502 {
3503         struct smi_info *e;
3504 
3505         list_for_each_entry(e, &smi_infos, link) {
3506                 if (e->io.addr_type != info->io.addr_type)
3507                         continue;
3508                 if (e->io.addr_data == info->io.addr_data)
3509                         return 0;
3510         }
3511 
3512         return 1;
3513 }
3514 
3515 static int add_smi(struct smi_info *new_smi)
3516 {
3517         int rv = 0;
3518 
3519         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3520                ipmi_addr_src_to_str(new_smi->addr_source),
3521                si_to_str[new_smi->si_type]);
3522         mutex_lock(&smi_infos_lock);
3523         if (!is_new_interface(new_smi)) {
3524                 printk(KERN_CONT " duplicate interface\n");
3525                 rv = -EBUSY;
3526                 goto out_err;
3527         }
3528 
3529         printk(KERN_CONT "\n");
3530 
3531         /* So we know not to free it unless we have allocated one. */
3532         new_smi->intf = NULL;
3533         new_smi->si_sm = NULL;
3534         new_smi->handlers = NULL;
3535 
3536         list_add_tail(&new_smi->link, &smi_infos);
3537 
3538 out_err:
3539         mutex_unlock(&smi_infos_lock);
3540         return rv;
3541 }
3542 
3543 static int try_smi_init(struct smi_info *new_smi)
3544 {
3545         int rv = 0;
3546         int i;
3547 
3548         printk(KERN_INFO PFX "Trying %s-specified %s state"
3549                " machine at %s address 0x%lx, slave address 0x%x,"
3550                " irq %d\n",
3551                ipmi_addr_src_to_str(new_smi->addr_source),
3552                si_to_str[new_smi->si_type],
3553                addr_space_to_str[new_smi->io.addr_type],
3554                new_smi->io.addr_data,
3555                new_smi->slave_addr, new_smi->irq);
3556 
3557         switch (new_smi->si_type) {
3558         case SI_KCS:
3559                 new_smi->handlers = &kcs_smi_handlers;
3560                 break;
3561 
3562         case SI_SMIC:
3563                 new_smi->handlers = &smic_smi_handlers;
3564                 break;
3565 
3566         case SI_BT:
3567                 new_smi->handlers = &bt_smi_handlers;
3568                 break;
3569 
3570         default:
3571                 /* No support for anything else yet. */
3572                 rv = -EIO;
3573                 goto out_err;
3574         }
3575 
3576         /* Allocate the state machine's data and initialize it. */
3577         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3578         if (!new_smi->si_sm) {
3579                 printk(KERN_ERR PFX
3580                        "Could not allocate state machine memory\n");
3581                 rv = -ENOMEM;
3582                 goto out_err;
3583         }
3584         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3585                                                         &new_smi->io);
3586 
3587         /* Now that we know the I/O size, we can set up the I/O. */
3588         rv = new_smi->io_setup(new_smi);
3589         if (rv) {
3590                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3591                 goto out_err;
3592         }
3593 
3594         /* Do low-level detection first. */
3595         if (new_smi->handlers->detect(new_smi->si_sm)) {
3596                 if (new_smi->addr_source)
3597                         printk(KERN_INFO PFX "Interface detection failed\n");
3598                 rv = -ENODEV;
3599                 goto out_err;
3600         }
3601 
3602         /*
3603          * Attempt a get device id command.  If it fails, we probably
3604          * don't have a BMC here.
3605          */
3606         rv = try_get_dev_id(new_smi);
3607         if (rv) {
3608                 if (new_smi->addr_source)
3609                         printk(KERN_INFO PFX "There appears to be no BMC"
3610                                " at this location\n");
3611                 goto out_err;
3612         }
3613 
3614         setup_oem_data_handler(new_smi);
3615         setup_xaction_handlers(new_smi);
3616         check_for_broken_irqs(new_smi);
3617 
3618         new_smi->waiting_msg = NULL;
3619         new_smi->curr_msg = NULL;
3620         atomic_set(&new_smi->req_events, 0);
3621         new_smi->run_to_completion = false;
3622         for (i = 0; i < SI_NUM_STATS; i++)
3623                 atomic_set(&new_smi->stats[i], 0);
3624 
3625         new_smi->interrupt_disabled = true;
3626         atomic_set(&new_smi->need_watch, 0);
3627         new_smi->intf_num = smi_num;
3628         smi_num++;
3629 
3630         rv = try_enable_event_buffer(new_smi);
3631         if (rv == 0)
3632                 new_smi->has_event_buffer = true;
3633 
3634         /*
3635          * Start clearing the flags before we enable interrupts or the
3636          * timer to avoid racing with the timer.
3637          */
3638         start_clear_flags(new_smi, false);
3639 
3640         /*
3641          * IRQ is defined to be set when non-zero.  req_events will
3642          * cause a global flags check that will enable interrupts.
3643          */
3644         if (new_smi->irq) {
3645                 new_smi->interrupt_disabled = false;
3646                 atomic_set(&new_smi->req_events, 1);
3647         }
3648 
3649         if (!new_smi->dev) {
3650                 /*
3651                  * If we don't already have a device from something
3652                  * else (like PCI), then register a new one.
3653                  */
3654                 new_smi->pdev = platform_device_alloc("ipmi_si",
3655                                                       new_smi->intf_num);
3656                 if (!new_smi->pdev) {
3657                         printk(KERN_ERR PFX
3658                                "Unable to allocate platform device\n");
3659                         goto out_err;
3660                 }
3661                 new_smi->dev = &new_smi->pdev->dev;
3662                 new_smi->dev->driver = &ipmi_driver.driver;
3663 
3664                 rv = platform_device_add(new_smi->pdev);
3665                 if (rv) {
3666                         printk(KERN_ERR PFX
3667                                "Unable to register system interface device:"
3668                                " %d\n",
3669                                rv);
3670                         goto out_err;
3671                 }
3672                 new_smi->dev_registered = true;
3673         }
3674 
3675         rv = ipmi_register_smi(&handlers,
3676                                new_smi,
3677                                &new_smi->device_id,
3678                                new_smi->dev,
3679                                new_smi->slave_addr);
3680         if (rv) {
3681                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3682                         rv);
3683                 goto out_err_stop_timer;
3684         }
3685 
3686         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3687                                      &smi_type_proc_ops,
3688                                      new_smi);
3689         if (rv) {
3690                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3691                 goto out_err_stop_timer;
3692         }
3693 
3694         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3695                                      &smi_si_stats_proc_ops,
3696                                      new_smi);
3697         if (rv) {
3698                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3699                 goto out_err_stop_timer;
3700         }
3701 
3702         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3703                                      &smi_params_proc_ops,
3704                                      new_smi);
3705         if (rv) {
3706                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3707                 goto out_err_stop_timer;
3708         }
3709 
3710         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3711                  si_to_str[new_smi->si_type]);
3712 
3713         return 0;
3714 
3715  out_err_stop_timer:
3716         wait_for_timer_and_thread(new_smi);
3717 
3718  out_err:
3719         new_smi->interrupt_disabled = true;
3720 
3721         if (new_smi->intf) {
3722                 ipmi_smi_t intf = new_smi->intf;
3723                 new_smi->intf = NULL;
3724                 ipmi_unregister_smi(intf);
3725         }
3726 
3727         if (new_smi->irq_cleanup) {
3728                 new_smi->irq_cleanup(new_smi);
3729                 new_smi->irq_cleanup = NULL;
3730         }
3731 
3732         /*
3733          * Wait until we know that we are out of any interrupt
3734          * handlers might have been running before we freed the
3735          * interrupt.
3736          */
3737         synchronize_sched();
3738 
3739         if (new_smi->si_sm) {
3740                 if (new_smi->handlers)
3741                         new_smi->handlers->cleanup(new_smi->si_sm);
3742                 kfree(new_smi->si_sm);
3743                 new_smi->si_sm = NULL;
3744         }
3745         if (new_smi->addr_source_cleanup) {
3746                 new_smi->addr_source_cleanup(new_smi);
3747                 new_smi->addr_source_cleanup = NULL;
3748         }
3749         if (new_smi->io_cleanup) {
3750                 new_smi->io_cleanup(new_smi);
3751                 new_smi->io_cleanup = NULL;
3752         }
3753 
3754         if (new_smi->dev_registered) {
3755                 platform_device_unregister(new_smi->pdev);
3756                 new_smi->dev_registered = false;
3757         }
3758 
3759         return rv;
3760 }
3761 
3762 static int init_ipmi_si(void)
3763 {
3764         int  i;
3765         char *str;
3766         int  rv;
3767         struct smi_info *e;
3768         enum ipmi_addr_src type = SI_INVALID;
3769 
3770         if (initialized)
3771                 return 0;
3772         initialized = 1;
3773 
3774         if (si_tryplatform) {
3775                 rv = platform_driver_register(&ipmi_driver);
3776                 if (rv) {
3777                         printk(KERN_ERR PFX "Unable to register "
3778                                "driver: %d\n", rv);
3779                         return rv;
3780                 }
3781         }
3782 
3783         /* Parse out the si_type string into its components. */
3784         str = si_type_str;
3785         if (*str != '\0') {
3786                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3787                         si_type[i] = str;
3788                         str = strchr(str, ',');
3789                         if (str) {
3790                                 *str = '\0';
3791                                 str++;
3792                         } else {
3793                                 break;
3794                         }
3795                 }
3796         }
3797 
3798         printk(KERN_INFO "IPMI System Interface driver.\n");
3799 
3800         /* If the user gave us a device, they presumably want us to use it */
3801         if (!hardcode_find_bmc())
3802                 return 0;
3803 
3804 #ifdef CONFIG_PCI
3805         if (si_trypci) {
3806                 rv = pci_register_driver(&ipmi_pci_driver);
3807                 if (rv)
3808                         printk(KERN_ERR PFX "Unable to register "
3809                                "PCI driver: %d\n", rv);
3810                 else
3811                         pci_registered = true;
3812         }
3813 #endif
3814 
3815 #ifdef CONFIG_DMI
3816         if (si_trydmi)
3817                 dmi_find_bmc();
3818 #endif
3819 
3820 #ifdef CONFIG_ACPI
3821         if (si_tryacpi)
3822                 spmi_find_bmc();
3823 #endif
3824 
3825 #ifdef CONFIG_PARISC
3826         register_parisc_driver(&ipmi_parisc_driver);
3827         parisc_registered = true;
3828         /* poking PC IO addresses will crash machine, don't do it */
3829         si_trydefaults = 0;
3830 #endif
3831 
3832         /* We prefer devices with interrupts, but in the case of a machine
3833            with multiple BMCs we assume that there will be several instances
3834            of a given type so if we succeed in registering a type then also
3835            try to register everything else of the same type */
3836 
3837         mutex_lock(&smi_infos_lock);
3838         list_for_each_entry(e, &smi_infos, link) {
3839                 /* Try to register a device if it has an IRQ and we either
3840                    haven't successfully registered a device yet or this
3841                    device has the same type as one we successfully registered */
3842                 if (e->irq && (!type || e->addr_source == type)) {
3843                         if (!try_smi_init(e)) {
3844                                 type = e->addr_source;
3845                         }
3846                 }
3847         }
3848 
3849         /* type will only have been set if we successfully registered an si */
3850         if (type) {
3851                 mutex_unlock(&smi_infos_lock);
3852                 return 0;
3853         }
3854 
3855         /* Fall back to the preferred device */
3856 
3857         list_for_each_entry(e, &smi_infos, link) {
3858                 if (!e->irq && (!type || e->addr_source == type)) {
3859                         if (!try_smi_init(e)) {
3860                                 type = e->addr_source;
3861                         }
3862                 }
3863         }
3864         mutex_unlock(&smi_infos_lock);
3865 
3866         if (type)
3867                 return 0;
3868 
3869         if (si_trydefaults) {
3870                 mutex_lock(&smi_infos_lock);
3871                 if (list_empty(&smi_infos)) {
3872                         /* No BMC was found, try defaults. */
3873                         mutex_unlock(&smi_infos_lock);
3874                         default_find_bmc();
3875                 } else
3876                         mutex_unlock(&smi_infos_lock);
3877         }
3878 
3879         mutex_lock(&smi_infos_lock);
3880         if (unload_when_empty && list_empty(&smi_infos)) {
3881                 mutex_unlock(&smi_infos_lock);
3882                 cleanup_ipmi_si();
3883                 printk(KERN_WARNING PFX
3884                        "Unable to find any System Interface(s)\n");
3885                 return -ENODEV;
3886         } else {
3887                 mutex_unlock(&smi_infos_lock);
3888                 return 0;
3889         }
3890 }
3891 module_init(init_ipmi_si);
3892 
3893 static void cleanup_one_si(struct smi_info *to_clean)
3894 {
3895         int           rv = 0;
3896 
3897         if (!to_clean)
3898                 return;
3899 
3900         if (to_clean->intf) {
3901                 ipmi_smi_t intf = to_clean->intf;
3902 
3903                 to_clean->intf = NULL;
3904                 rv = ipmi_unregister_smi(intf);
3905                 if (rv) {
3906                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3907                                rv);
3908                 }
3909         }
3910 
3911         if (to_clean->dev)
3912                 dev_set_drvdata(to_clean->dev, NULL);
3913 
3914         list_del(&to_clean->link);
3915 
3916         /*
3917          * Make sure that interrupts, the timer and the thread are
3918          * stopped and will not run again.
3919          */
3920         if (to_clean->irq_cleanup)
3921                 to_clean->irq_cleanup(to_clean);
3922         wait_for_timer_and_thread(to_clean);
3923 
3924         /*
3925          * Timeouts are stopped, now make sure the interrupts are off
3926          * in the BMC.  Note that timers and CPU interrupts are off,
3927          * so no need for locks.
3928          */
3929         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3930                 poll(to_clean);
3931                 schedule_timeout_uninterruptible(1);
3932         }
3933         disable_si_irq(to_clean, false);
3934         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3935                 poll(to_clean);
3936                 schedule_timeout_uninterruptible(1);
3937         }
3938 
3939         if (to_clean->handlers)
3940                 to_clean->handlers->cleanup(to_clean->si_sm);
3941 
3942         kfree(to_clean->si_sm);
3943 
3944         if (to_clean->addr_source_cleanup)
3945                 to_clean->addr_source_cleanup(to_clean);
3946         if (to_clean->io_cleanup)
3947                 to_clean->io_cleanup(to_clean);
3948 
3949         if (to_clean->dev_registered)
3950                 platform_device_unregister(to_clean->pdev);
3951 
3952         kfree(to_clean);
3953 }
3954 
3955 static void cleanup_ipmi_si(void)
3956 {
3957         struct smi_info *e, *tmp_e;
3958 
3959         if (!initialized)
3960                 return;
3961 
3962 #ifdef CONFIG_PCI
3963         if (pci_registered)
3964                 pci_unregister_driver(&ipmi_pci_driver);
3965 #endif
3966 #ifdef CONFIG_PARISC
3967         if (parisc_registered)
3968                 unregister_parisc_driver(&ipmi_parisc_driver);
3969 #endif
3970 
3971         platform_driver_unregister(&ipmi_driver);
3972 
3973         mutex_lock(&smi_infos_lock);
3974         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3975                 cleanup_one_si(e);
3976         mutex_unlock(&smi_infos_lock);
3977 }
3978 module_exit(cleanup_ipmi_si);
3979 
3980 MODULE_LICENSE("GPL");
3981 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3982 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3983                    " system interfaces.");
3984 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us