Version:  2.0.40 2.2.26 2.4.37 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

Linux/drivers/char/ipmi/ipmi_si_intf.c

  1 /*
  2  * ipmi_si.c
  3  *
  4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
  5  * BT).
  6  *
  7  * Author: MontaVista Software, Inc.
  8  *         Corey Minyard <minyard@mvista.com>
  9  *         source@mvista.com
 10  *
 11  * Copyright 2002 MontaVista Software Inc.
 12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
 13  *
 14  *  This program is free software; you can redistribute it and/or modify it
 15  *  under the terms of the GNU General Public License as published by the
 16  *  Free Software Foundation; either version 2 of the License, or (at your
 17  *  option) any later version.
 18  *
 19  *
 20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 30  *
 31  *  You should have received a copy of the GNU General Public License along
 32  *  with this program; if not, write to the Free Software Foundation, Inc.,
 33  *  675 Mass Ave, Cambridge, MA 02139, USA.
 34  */
 35 
 36 /*
 37  * This file holds the "policy" for the interface to the SMI state
 38  * machine.  It does the configuration, handles timers and interrupts,
 39  * and drives the real SMI state machine.
 40  */
 41 
 42 #include <linux/module.h>
 43 #include <linux/moduleparam.h>
 44 #include <linux/sched.h>
 45 #include <linux/seq_file.h>
 46 #include <linux/timer.h>
 47 #include <linux/errno.h>
 48 #include <linux/spinlock.h>
 49 #include <linux/slab.h>
 50 #include <linux/delay.h>
 51 #include <linux/list.h>
 52 #include <linux/pci.h>
 53 #include <linux/ioport.h>
 54 #include <linux/notifier.h>
 55 #include <linux/mutex.h>
 56 #include <linux/kthread.h>
 57 #include <asm/irq.h>
 58 #include <linux/interrupt.h>
 59 #include <linux/rcupdate.h>
 60 #include <linux/ipmi.h>
 61 #include <linux/ipmi_smi.h>
 62 #include <asm/io.h>
 63 #include "ipmi_si_sm.h"
 64 #include <linux/dmi.h>
 65 #include <linux/string.h>
 66 #include <linux/ctype.h>
 67 #include <linux/of_device.h>
 68 #include <linux/of_platform.h>
 69 #include <linux/of_address.h>
 70 #include <linux/of_irq.h>
 71 #include <linux/acpi.h>
 72 
 73 #ifdef CONFIG_PARISC
 74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
 75 #include <asm/parisc-device.h>
 76 #endif
 77 
 78 #define PFX "ipmi_si: "
 79 
 80 /* Measure times between events in the driver. */
 81 #undef DEBUG_TIMING
 82 
 83 /* Call every 10 ms. */
 84 #define SI_TIMEOUT_TIME_USEC    10000
 85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
 86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
 87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
 88                                       short timeout */
 89 
 90 enum si_intf_state {
 91         SI_NORMAL,
 92         SI_GETTING_FLAGS,
 93         SI_GETTING_EVENTS,
 94         SI_CLEARING_FLAGS,
 95         SI_GETTING_MESSAGES,
 96         SI_CHECKING_ENABLES,
 97         SI_SETTING_ENABLES
 98         /* FIXME - add watchdog stuff. */
 99 };
100 
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105 
106 enum si_type {
107         SI_KCS, SI_SMIC, SI_BT
108 };
109 
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
111 
112 #define DEVICE_NAME "ipmi_si"
113 
114 static struct platform_driver ipmi_driver;
115 
116 /*
117  * Indexes into stats[] in smi_info below.
118  */
119 enum si_stat_indexes {
120         /*
121          * Number of times the driver requested a timer while an operation
122          * was in progress.
123          */
124         SI_STAT_short_timeouts = 0,
125 
126         /*
127          * Number of times the driver requested a timer while nothing was in
128          * progress.
129          */
130         SI_STAT_long_timeouts,
131 
132         /* Number of times the interface was idle while being polled. */
133         SI_STAT_idles,
134 
135         /* Number of interrupts the driver handled. */
136         SI_STAT_interrupts,
137 
138         /* Number of time the driver got an ATTN from the hardware. */
139         SI_STAT_attentions,
140 
141         /* Number of times the driver requested flags from the hardware. */
142         SI_STAT_flag_fetches,
143 
144         /* Number of times the hardware didn't follow the state machine. */
145         SI_STAT_hosed_count,
146 
147         /* Number of completed messages. */
148         SI_STAT_complete_transactions,
149 
150         /* Number of IPMI events received from the hardware. */
151         SI_STAT_events,
152 
153         /* Number of watchdog pretimeouts. */
154         SI_STAT_watchdog_pretimeouts,
155 
156         /* Number of asynchronous messages received. */
157         SI_STAT_incoming_messages,
158 
159 
160         /* This *must* remain last, add new values above this. */
161         SI_NUM_STATS
162 };
163 
164 struct smi_info {
165         int                    intf_num;
166         ipmi_smi_t             intf;
167         struct si_sm_data      *si_sm;
168         const struct si_sm_handlers *handlers;
169         enum si_type           si_type;
170         spinlock_t             si_lock;
171         struct ipmi_smi_msg    *waiting_msg;
172         struct ipmi_smi_msg    *curr_msg;
173         enum si_intf_state     si_state;
174 
175         /*
176          * Used to handle the various types of I/O that can occur with
177          * IPMI
178          */
179         struct si_sm_io io;
180         int (*io_setup)(struct smi_info *info);
181         void (*io_cleanup)(struct smi_info *info);
182         int (*irq_setup)(struct smi_info *info);
183         void (*irq_cleanup)(struct smi_info *info);
184         unsigned int io_size;
185         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186         void (*addr_source_cleanup)(struct smi_info *info);
187         void *addr_source_data;
188 
189         /*
190          * Per-OEM handler, called from handle_flags().  Returns 1
191          * when handle_flags() needs to be re-run or 0 indicating it
192          * set si_state itself.
193          */
194         int (*oem_data_avail_handler)(struct smi_info *smi_info);
195 
196         /*
197          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198          * is set to hold the flags until we are done handling everything
199          * from the flags.
200          */
201 #define RECEIVE_MSG_AVAIL       0x01
202 #define EVENT_MSG_BUFFER_FULL   0x02
203 #define WDT_PRE_TIMEOUT_INT     0x08
204 #define OEM0_DATA_AVAIL     0x20
205 #define OEM1_DATA_AVAIL     0x40
206 #define OEM2_DATA_AVAIL     0x80
207 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
208                              OEM1_DATA_AVAIL | \
209                              OEM2_DATA_AVAIL)
210         unsigned char       msg_flags;
211 
212         /* Does the BMC have an event buffer? */
213         bool                has_event_buffer;
214 
215         /*
216          * If set to true, this will request events the next time the
217          * state machine is idle.
218          */
219         atomic_t            req_events;
220 
221         /*
222          * If true, run the state machine to completion on every send
223          * call.  Generally used after a panic to make sure stuff goes
224          * out.
225          */
226         bool                run_to_completion;
227 
228         /* The I/O port of an SI interface. */
229         int                 port;
230 
231         /*
232          * The space between start addresses of the two ports.  For
233          * instance, if the first port is 0xca2 and the spacing is 4, then
234          * the second port is 0xca6.
235          */
236         unsigned int        spacing;
237 
238         /* zero if no irq; */
239         int                 irq;
240 
241         /* The timer for this si. */
242         struct timer_list   si_timer;
243 
244         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
245         bool                timer_running;
246 
247         /* The time (in jiffies) the last timeout occurred at. */
248         unsigned long       last_timeout_jiffies;
249 
250         /* Are we waiting for the events, pretimeouts, received msgs? */
251         atomic_t            need_watch;
252 
253         /*
254          * The driver will disable interrupts when it gets into a
255          * situation where it cannot handle messages due to lack of
256          * memory.  Once that situation clears up, it will re-enable
257          * interrupts.
258          */
259         bool interrupt_disabled;
260 
261         /*
262          * Does the BMC support events?
263          */
264         bool supports_event_msg_buff;
265 
266         /*
267          * Can we disable interrupts the global enables receive irq
268          * bit?  There are currently two forms of brokenness, some
269          * systems cannot disable the bit (which is technically within
270          * the spec but a bad idea) and some systems have the bit
271          * forced to zero even though interrupts work (which is
272          * clearly outside the spec).  The next bool tells which form
273          * of brokenness is present.
274          */
275         bool cannot_disable_irq;
276 
277         /*
278          * Some systems are broken and cannot set the irq enable
279          * bit, even if they support interrupts.
280          */
281         bool irq_enable_broken;
282 
283         /*
284          * Did we get an attention that we did not handle?
285          */
286         bool got_attn;
287 
288         /* From the get device id response... */
289         struct ipmi_device_id device_id;
290 
291         /* Driver model stuff. */
292         struct device *dev;
293         struct platform_device *pdev;
294 
295         /*
296          * True if we allocated the device, false if it came from
297          * someplace else (like PCI).
298          */
299         bool dev_registered;
300 
301         /* Slave address, could be reported from DMI. */
302         unsigned char slave_addr;
303 
304         /* Counters and things for the proc filesystem. */
305         atomic_t stats[SI_NUM_STATS];
306 
307         struct task_struct *thread;
308 
309         struct list_head link;
310         union ipmi_smi_info_union addr_info;
311 };
312 
313 #define smi_inc_stat(smi, stat) \
314         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
317 
318 #define SI_MAX_PARMS 4
319 
320 static int force_kipmid[SI_MAX_PARMS];
321 static int num_force_kipmid;
322 #ifdef CONFIG_PCI
323 static bool pci_registered;
324 #endif
325 #ifdef CONFIG_PARISC
326 static bool parisc_registered;
327 #endif
328 
329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330 static int num_max_busy_us;
331 
332 static bool unload_when_empty = true;
333 
334 static int add_smi(struct smi_info *smi);
335 static int try_smi_init(struct smi_info *smi);
336 static void cleanup_one_si(struct smi_info *to_clean);
337 static void cleanup_ipmi_si(void);
338 
339 #ifdef DEBUG_TIMING
340 void debug_timestamp(char *msg)
341 {
342         struct timespec64 t;
343 
344         getnstimeofday64(&t);
345         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
346 }
347 #else
348 #define debug_timestamp(x)
349 #endif
350 
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
352 static int register_xaction_notifier(struct notifier_block *nb)
353 {
354         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
355 }
356 
357 static void deliver_recv_msg(struct smi_info *smi_info,
358                              struct ipmi_smi_msg *msg)
359 {
360         /* Deliver the message to the upper layer. */
361         if (smi_info->intf)
362                 ipmi_smi_msg_received(smi_info->intf, msg);
363         else
364                 ipmi_free_smi_msg(msg);
365 }
366 
367 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
368 {
369         struct ipmi_smi_msg *msg = smi_info->curr_msg;
370 
371         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372                 cCode = IPMI_ERR_UNSPECIFIED;
373         /* else use it as is */
374 
375         /* Make it a response */
376         msg->rsp[0] = msg->data[0] | 4;
377         msg->rsp[1] = msg->data[1];
378         msg->rsp[2] = cCode;
379         msg->rsp_size = 3;
380 
381         smi_info->curr_msg = NULL;
382         deliver_recv_msg(smi_info, msg);
383 }
384 
385 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
386 {
387         int              rv;
388 
389         if (!smi_info->waiting_msg) {
390                 smi_info->curr_msg = NULL;
391                 rv = SI_SM_IDLE;
392         } else {
393                 int err;
394 
395                 smi_info->curr_msg = smi_info->waiting_msg;
396                 smi_info->waiting_msg = NULL;
397                 debug_timestamp("Start2");
398                 err = atomic_notifier_call_chain(&xaction_notifier_list,
399                                 0, smi_info);
400                 if (err & NOTIFY_STOP_MASK) {
401                         rv = SI_SM_CALL_WITHOUT_DELAY;
402                         goto out;
403                 }
404                 err = smi_info->handlers->start_transaction(
405                         smi_info->si_sm,
406                         smi_info->curr_msg->data,
407                         smi_info->curr_msg->data_size);
408                 if (err)
409                         return_hosed_msg(smi_info, err);
410 
411                 rv = SI_SM_CALL_WITHOUT_DELAY;
412         }
413 out:
414         return rv;
415 }
416 
417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
418 {
419         smi_info->last_timeout_jiffies = jiffies;
420         mod_timer(&smi_info->si_timer, new_val);
421         smi_info->timer_running = true;
422 }
423 
424 /*
425  * Start a new message and (re)start the timer and thread.
426  */
427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428                           unsigned int size)
429 {
430         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
431 
432         if (smi_info->thread)
433                 wake_up_process(smi_info->thread);
434 
435         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
436 }
437 
438 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
439 {
440         unsigned char msg[2];
441 
442         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444 
445         if (start_timer)
446                 start_new_msg(smi_info, msg, 2);
447         else
448                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
449         smi_info->si_state = SI_CHECKING_ENABLES;
450 }
451 
452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
453 {
454         unsigned char msg[3];
455 
456         /* Make sure the watchdog pre-timeout flag is not set at startup. */
457         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459         msg[2] = WDT_PRE_TIMEOUT_INT;
460 
461         if (start_timer)
462                 start_new_msg(smi_info, msg, 3);
463         else
464                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
465         smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467 
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472         smi_info->curr_msg->data_size = 2;
473 
474         start_new_msg(smi_info, smi_info->curr_msg->data,
475                       smi_info->curr_msg->data_size);
476         smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478 
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483         smi_info->curr_msg->data_size = 2;
484 
485         start_new_msg(smi_info, smi_info->curr_msg->data,
486                       smi_info->curr_msg->data_size);
487         smi_info->si_state = SI_GETTING_EVENTS;
488 }
489 
490 /*
491  * When we have a situtaion where we run out of memory and cannot
492  * allocate messages, we just leave them in the BMC and run the system
493  * polled until we can allocate some memory.  Once we have some
494  * memory, we will re-enable the interrupt.
495  *
496  * Note that we cannot just use disable_irq(), since the interrupt may
497  * be shared.
498  */
499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
500 {
501         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502                 smi_info->interrupt_disabled = true;
503                 start_check_enables(smi_info, start_timer);
504                 return true;
505         }
506         return false;
507 }
508 
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512                 smi_info->interrupt_disabled = false;
513                 start_check_enables(smi_info, true);
514                 return true;
515         }
516         return false;
517 }
518 
519 /*
520  * Allocate a message.  If unable to allocate, start the interrupt
521  * disable process and return NULL.  If able to allocate but
522  * interrupts are disabled, free the message and return NULL after
523  * starting the interrupt enable process.
524  */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527         struct ipmi_smi_msg *msg;
528 
529         msg = ipmi_alloc_smi_msg();
530         if (!msg) {
531                 if (!disable_si_irq(smi_info, true))
532                         smi_info->si_state = SI_NORMAL;
533         } else if (enable_si_irq(smi_info)) {
534                 ipmi_free_smi_msg(msg);
535                 msg = NULL;
536         }
537         return msg;
538 }
539 
540 static void handle_flags(struct smi_info *smi_info)
541 {
542 retry:
543         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544                 /* Watchdog pre-timeout */
545                 smi_inc_stat(smi_info, watchdog_pretimeouts);
546 
547                 start_clear_flags(smi_info, true);
548                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549                 if (smi_info->intf)
550                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
551         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552                 /* Messages available. */
553                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554                 if (!smi_info->curr_msg)
555                         return;
556 
557                 start_getting_msg_queue(smi_info);
558         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559                 /* Events available. */
560                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561                 if (!smi_info->curr_msg)
562                         return;
563 
564                 start_getting_events(smi_info);
565         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566                    smi_info->oem_data_avail_handler) {
567                 if (smi_info->oem_data_avail_handler(smi_info))
568                         goto retry;
569         } else
570                 smi_info->si_state = SI_NORMAL;
571 }
572 
573 /*
574  * Global enables we care about.
575  */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577                              IPMI_BMC_EVT_MSG_INTR)
578 
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580                                  bool *irq_on)
581 {
582         u8 enables = 0;
583 
584         if (smi_info->supports_event_msg_buff)
585                 enables |= IPMI_BMC_EVT_MSG_BUFF;
586 
587         if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588              smi_info->cannot_disable_irq) &&
589             !smi_info->irq_enable_broken)
590                 enables |= IPMI_BMC_RCV_MSG_INTR;
591 
592         if (smi_info->supports_event_msg_buff &&
593             smi_info->irq && !smi_info->interrupt_disabled &&
594             !smi_info->irq_enable_broken)
595                 enables |= IPMI_BMC_EVT_MSG_INTR;
596 
597         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598 
599         return enables;
600 }
601 
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605 
606         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607 
608         if ((bool)irqstate == irq_on)
609                 return;
610 
611         if (irq_on)
612                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614         else
615                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617 
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620         struct ipmi_smi_msg *msg;
621 
622         debug_timestamp("Done");
623         switch (smi_info->si_state) {
624         case SI_NORMAL:
625                 if (!smi_info->curr_msg)
626                         break;
627 
628                 smi_info->curr_msg->rsp_size
629                         = smi_info->handlers->get_result(
630                                 smi_info->si_sm,
631                                 smi_info->curr_msg->rsp,
632                                 IPMI_MAX_MSG_LENGTH);
633 
634                 /*
635                  * Do this here becase deliver_recv_msg() releases the
636                  * lock, and a new message can be put in during the
637                  * time the lock is released.
638                  */
639                 msg = smi_info->curr_msg;
640                 smi_info->curr_msg = NULL;
641                 deliver_recv_msg(smi_info, msg);
642                 break;
643 
644         case SI_GETTING_FLAGS:
645         {
646                 unsigned char msg[4];
647                 unsigned int  len;
648 
649                 /* We got the flags from the SMI, now handle them. */
650                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651                 if (msg[2] != 0) {
652                         /* Error fetching flags, just give up for now. */
653                         smi_info->si_state = SI_NORMAL;
654                 } else if (len < 4) {
655                         /*
656                          * Hmm, no flags.  That's technically illegal, but
657                          * don't use uninitialized data.
658                          */
659                         smi_info->si_state = SI_NORMAL;
660                 } else {
661                         smi_info->msg_flags = msg[3];
662                         handle_flags(smi_info);
663                 }
664                 break;
665         }
666 
667         case SI_CLEARING_FLAGS:
668         {
669                 unsigned char msg[3];
670 
671                 /* We cleared the flags. */
672                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673                 if (msg[2] != 0) {
674                         /* Error clearing flags */
675                         dev_warn(smi_info->dev,
676                                  "Error clearing flags: %2.2x\n", msg[2]);
677                 }
678                 smi_info->si_state = SI_NORMAL;
679                 break;
680         }
681 
682         case SI_GETTING_EVENTS:
683         {
684                 smi_info->curr_msg->rsp_size
685                         = smi_info->handlers->get_result(
686                                 smi_info->si_sm,
687                                 smi_info->curr_msg->rsp,
688                                 IPMI_MAX_MSG_LENGTH);
689 
690                 /*
691                  * Do this here becase deliver_recv_msg() releases the
692                  * lock, and a new message can be put in during the
693                  * time the lock is released.
694                  */
695                 msg = smi_info->curr_msg;
696                 smi_info->curr_msg = NULL;
697                 if (msg->rsp[2] != 0) {
698                         /* Error getting event, probably done. */
699                         msg->done(msg);
700 
701                         /* Take off the event flag. */
702                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703                         handle_flags(smi_info);
704                 } else {
705                         smi_inc_stat(smi_info, events);
706 
707                         /*
708                          * Do this before we deliver the message
709                          * because delivering the message releases the
710                          * lock and something else can mess with the
711                          * state.
712                          */
713                         handle_flags(smi_info);
714 
715                         deliver_recv_msg(smi_info, msg);
716                 }
717                 break;
718         }
719 
720         case SI_GETTING_MESSAGES:
721         {
722                 smi_info->curr_msg->rsp_size
723                         = smi_info->handlers->get_result(
724                                 smi_info->si_sm,
725                                 smi_info->curr_msg->rsp,
726                                 IPMI_MAX_MSG_LENGTH);
727 
728                 /*
729                  * Do this here becase deliver_recv_msg() releases the
730                  * lock, and a new message can be put in during the
731                  * time the lock is released.
732                  */
733                 msg = smi_info->curr_msg;
734                 smi_info->curr_msg = NULL;
735                 if (msg->rsp[2] != 0) {
736                         /* Error getting event, probably done. */
737                         msg->done(msg);
738 
739                         /* Take off the msg flag. */
740                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741                         handle_flags(smi_info);
742                 } else {
743                         smi_inc_stat(smi_info, incoming_messages);
744 
745                         /*
746                          * Do this before we deliver the message
747                          * because delivering the message releases the
748                          * lock and something else can mess with the
749                          * state.
750                          */
751                         handle_flags(smi_info);
752 
753                         deliver_recv_msg(smi_info, msg);
754                 }
755                 break;
756         }
757 
758         case SI_CHECKING_ENABLES:
759         {
760                 unsigned char msg[4];
761                 u8 enables;
762                 bool irq_on;
763 
764                 /* We got the flags from the SMI, now handle them. */
765                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766                 if (msg[2] != 0) {
767                         dev_warn(smi_info->dev,
768                                  "Couldn't get irq info: %x.\n", msg[2]);
769                         dev_warn(smi_info->dev,
770                                  "Maybe ok, but ipmi might run very slowly.\n");
771                         smi_info->si_state = SI_NORMAL;
772                         break;
773                 }
774                 enables = current_global_enables(smi_info, 0, &irq_on);
775                 if (smi_info->si_type == SI_BT)
776                         /* BT has its own interrupt enable bit. */
777                         check_bt_irq(smi_info, irq_on);
778                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779                         /* Enables are not correct, fix them. */
780                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783                         smi_info->handlers->start_transaction(
784                                 smi_info->si_sm, msg, 3);
785                         smi_info->si_state = SI_SETTING_ENABLES;
786                 } else if (smi_info->supports_event_msg_buff) {
787                         smi_info->curr_msg = ipmi_alloc_smi_msg();
788                         if (!smi_info->curr_msg) {
789                                 smi_info->si_state = SI_NORMAL;
790                                 break;
791                         }
792                         start_getting_msg_queue(smi_info);
793                 } else {
794                         smi_info->si_state = SI_NORMAL;
795                 }
796                 break;
797         }
798 
799         case SI_SETTING_ENABLES:
800         {
801                 unsigned char msg[4];
802 
803                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804                 if (msg[2] != 0)
805                         dev_warn(smi_info->dev,
806                                  "Could not set the global enables: 0x%x.\n",
807                                  msg[2]);
808 
809                 if (smi_info->supports_event_msg_buff) {
810                         smi_info->curr_msg = ipmi_alloc_smi_msg();
811                         if (!smi_info->curr_msg) {
812                                 smi_info->si_state = SI_NORMAL;
813                                 break;
814                         }
815                         start_getting_msg_queue(smi_info);
816                 } else {
817                         smi_info->si_state = SI_NORMAL;
818                 }
819                 break;
820         }
821         }
822 }
823 
824 /*
825  * Called on timeouts and events.  Timeouts should pass the elapsed
826  * time, interrupts should pass in zero.  Must be called with
827  * si_lock held and interrupts disabled.
828  */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830                                            int time)
831 {
832         enum si_sm_result si_sm_result;
833 
834 restart:
835         /*
836          * There used to be a loop here that waited a little while
837          * (around 25us) before giving up.  That turned out to be
838          * pointless, the minimum delays I was seeing were in the 300us
839          * range, which is far too long to wait in an interrupt.  So
840          * we just run until the state machine tells us something
841          * happened or it needs a delay.
842          */
843         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844         time = 0;
845         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847 
848         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849                 smi_inc_stat(smi_info, complete_transactions);
850 
851                 handle_transaction_done(smi_info);
852                 goto restart;
853         } else if (si_sm_result == SI_SM_HOSED) {
854                 smi_inc_stat(smi_info, hosed_count);
855 
856                 /*
857                  * Do the before return_hosed_msg, because that
858                  * releases the lock.
859                  */
860                 smi_info->si_state = SI_NORMAL;
861                 if (smi_info->curr_msg != NULL) {
862                         /*
863                          * If we were handling a user message, format
864                          * a response to send to the upper layer to
865                          * tell it about the error.
866                          */
867                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868                 }
869                 goto restart;
870         }
871 
872         /*
873          * We prefer handling attn over new messages.  But don't do
874          * this if there is not yet an upper layer to handle anything.
875          */
876         if (likely(smi_info->intf) &&
877             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878                 unsigned char msg[2];
879 
880                 if (smi_info->si_state != SI_NORMAL) {
881                         /*
882                          * We got an ATTN, but we are doing something else.
883                          * Handle the ATTN later.
884                          */
885                         smi_info->got_attn = true;
886                 } else {
887                         smi_info->got_attn = false;
888                         smi_inc_stat(smi_info, attentions);
889 
890                         /*
891                          * Got a attn, send down a get message flags to see
892                          * what's causing it.  It would be better to handle
893                          * this in the upper layer, but due to the way
894                          * interrupts work with the SMI, that's not really
895                          * possible.
896                          */
897                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899 
900                         start_new_msg(smi_info, msg, 2);
901                         smi_info->si_state = SI_GETTING_FLAGS;
902                         goto restart;
903                 }
904         }
905 
906         /* If we are currently idle, try to start the next message. */
907         if (si_sm_result == SI_SM_IDLE) {
908                 smi_inc_stat(smi_info, idles);
909 
910                 si_sm_result = start_next_msg(smi_info);
911                 if (si_sm_result != SI_SM_IDLE)
912                         goto restart;
913         }
914 
915         if ((si_sm_result == SI_SM_IDLE)
916             && (atomic_read(&smi_info->req_events))) {
917                 /*
918                  * We are idle and the upper layer requested that I fetch
919                  * events, so do so.
920                  */
921                 atomic_set(&smi_info->req_events, 0);
922 
923                 /*
924                  * Take this opportunity to check the interrupt and
925                  * message enable state for the BMC.  The BMC can be
926                  * asynchronously reset, and may thus get interrupts
927                  * disable and messages disabled.
928                  */
929                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
930                         start_check_enables(smi_info, true);
931                 } else {
932                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933                         if (!smi_info->curr_msg)
934                                 goto out;
935 
936                         start_getting_events(smi_info);
937                 }
938                 goto restart;
939         }
940 
941         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942                 /* Ok it if fails, the timer will just go off. */
943                 if (del_timer(&smi_info->si_timer))
944                         smi_info->timer_running = false;
945         }
946 
947 out:
948         return si_sm_result;
949 }
950 
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955 
956                 if (smi_info->thread)
957                         wake_up_process(smi_info->thread);
958 
959                 start_next_msg(smi_info);
960                 smi_event_handler(smi_info, 0);
961         }
962 }
963 
964 static void flush_messages(void *send_info)
965 {
966         struct smi_info *smi_info = send_info;
967         enum si_sm_result result;
968 
969         /*
970          * Currently, this function is called only in run-to-completion
971          * mode.  This means we are single-threaded, no need for locks.
972          */
973         result = smi_event_handler(smi_info, 0);
974         while (result != SI_SM_IDLE) {
975                 udelay(SI_SHORT_TIMEOUT_USEC);
976                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977         }
978 }
979 
980 static void sender(void                *send_info,
981                    struct ipmi_smi_msg *msg)
982 {
983         struct smi_info   *smi_info = send_info;
984         unsigned long     flags;
985 
986         debug_timestamp("Enqueue");
987 
988         if (smi_info->run_to_completion) {
989                 /*
990                  * If we are running to completion, start it.  Upper
991                  * layer will call flush_messages to clear it out.
992                  */
993                 smi_info->waiting_msg = msg;
994                 return;
995         }
996 
997         spin_lock_irqsave(&smi_info->si_lock, flags);
998         /*
999          * The following two lines don't need to be under the lock for
1000          * the lock's sake, but they do need SMP memory barriers to
1001          * avoid getting things out of order.  We are already claiming
1002          * the lock, anyway, so just do it under the lock to avoid the
1003          * ordering problem.
1004          */
1005         BUG_ON(smi_info->waiting_msg);
1006         smi_info->waiting_msg = msg;
1007         check_start_timer_thread(smi_info);
1008         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010 
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013         struct smi_info   *smi_info = send_info;
1014 
1015         smi_info->run_to_completion = i_run_to_completion;
1016         if (i_run_to_completion)
1017                 flush_messages(smi_info);
1018 }
1019 
1020 /*
1021  * Use -1 in the nsec value of the busy waiting timespec to tell that
1022  * we are spinning in kipmid looking for something and not delaying
1023  * between checks
1024  */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027         ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031         return ts->tv_nsec != -1;
1032 }
1033 
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035                                         const struct smi_info *smi_info,
1036                                         struct timespec64 *busy_until)
1037 {
1038         unsigned int max_busy_us = 0;
1039 
1040         if (smi_info->intf_num < num_max_busy_us)
1041                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043                 ipmi_si_set_not_busy(busy_until);
1044         else if (!ipmi_si_is_busy(busy_until)) {
1045                 getnstimeofday64(busy_until);
1046                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047         } else {
1048                 struct timespec64 now;
1049 
1050                 getnstimeofday64(&now);
1051                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052                         ipmi_si_set_not_busy(busy_until);
1053                         return 0;
1054                 }
1055         }
1056         return 1;
1057 }
1058 
1059 
1060 /*
1061  * A busy-waiting loop for speeding up IPMI operation.
1062  *
1063  * Lousy hardware makes this hard.  This is only enabled for systems
1064  * that are not BT and do not have interrupts.  It starts spinning
1065  * when an operation is complete or until max_busy tells it to stop
1066  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1067  * Documentation/IPMI.txt for details.
1068  */
1069 static int ipmi_thread(void *data)
1070 {
1071         struct smi_info *smi_info = data;
1072         unsigned long flags;
1073         enum si_sm_result smi_result;
1074         struct timespec64 busy_until;
1075 
1076         ipmi_si_set_not_busy(&busy_until);
1077         set_user_nice(current, MAX_NICE);
1078         while (!kthread_should_stop()) {
1079                 int busy_wait;
1080 
1081                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082                 smi_result = smi_event_handler(smi_info, 0);
1083 
1084                 /*
1085                  * If the driver is doing something, there is a possible
1086                  * race with the timer.  If the timer handler see idle,
1087                  * and the thread here sees something else, the timer
1088                  * handler won't restart the timer even though it is
1089                  * required.  So start it here if necessary.
1090                  */
1091                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093 
1094                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096                                                   &busy_until);
1097                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098                         ; /* do nothing */
1099                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100                         schedule();
1101                 else if (smi_result == SI_SM_IDLE) {
1102                         if (atomic_read(&smi_info->need_watch)) {
1103                                 schedule_timeout_interruptible(100);
1104                         } else {
1105                                 /* Wait to be woken up when we are needed. */
1106                                 __set_current_state(TASK_INTERRUPTIBLE);
1107                                 schedule();
1108                         }
1109                 } else
1110                         schedule_timeout_interruptible(1);
1111         }
1112         return 0;
1113 }
1114 
1115 
1116 static void poll(void *send_info)
1117 {
1118         struct smi_info *smi_info = send_info;
1119         unsigned long flags = 0;
1120         bool run_to_completion = smi_info->run_to_completion;
1121 
1122         /*
1123          * Make sure there is some delay in the poll loop so we can
1124          * drive time forward and timeout things.
1125          */
1126         udelay(10);
1127         if (!run_to_completion)
1128                 spin_lock_irqsave(&smi_info->si_lock, flags);
1129         smi_event_handler(smi_info, 10);
1130         if (!run_to_completion)
1131                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132 }
1133 
1134 static void request_events(void *send_info)
1135 {
1136         struct smi_info *smi_info = send_info;
1137 
1138         if (!smi_info->has_event_buffer)
1139                 return;
1140 
1141         atomic_set(&smi_info->req_events, 1);
1142 }
1143 
1144 static void set_need_watch(void *send_info, bool enable)
1145 {
1146         struct smi_info *smi_info = send_info;
1147         unsigned long flags;
1148 
1149         atomic_set(&smi_info->need_watch, enable);
1150         spin_lock_irqsave(&smi_info->si_lock, flags);
1151         check_start_timer_thread(smi_info);
1152         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153 }
1154 
1155 static int initialized;
1156 
1157 static void smi_timeout(unsigned long data)
1158 {
1159         struct smi_info   *smi_info = (struct smi_info *) data;
1160         enum si_sm_result smi_result;
1161         unsigned long     flags;
1162         unsigned long     jiffies_now;
1163         long              time_diff;
1164         long              timeout;
1165 
1166         spin_lock_irqsave(&(smi_info->si_lock), flags);
1167         debug_timestamp("Timer");
1168 
1169         jiffies_now = jiffies;
1170         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171                      * SI_USEC_PER_JIFFY);
1172         smi_result = smi_event_handler(smi_info, time_diff);
1173 
1174         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175                 /* Running with interrupts, only do long timeouts. */
1176                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177                 smi_inc_stat(smi_info, long_timeouts);
1178                 goto do_mod_timer;
1179         }
1180 
1181         /*
1182          * If the state machine asks for a short delay, then shorten
1183          * the timer timeout.
1184          */
1185         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186                 smi_inc_stat(smi_info, short_timeouts);
1187                 timeout = jiffies + 1;
1188         } else {
1189                 smi_inc_stat(smi_info, long_timeouts);
1190                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191         }
1192 
1193 do_mod_timer:
1194         if (smi_result != SI_SM_IDLE)
1195                 smi_mod_timer(smi_info, timeout);
1196         else
1197                 smi_info->timer_running = false;
1198         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199 }
1200 
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1202 {
1203         struct smi_info *smi_info = data;
1204         unsigned long   flags;
1205 
1206         spin_lock_irqsave(&(smi_info->si_lock), flags);
1207 
1208         smi_inc_stat(smi_info, interrupts);
1209 
1210         debug_timestamp("Interrupt");
1211 
1212         smi_event_handler(smi_info, 0);
1213         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214         return IRQ_HANDLED;
1215 }
1216 
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 {
1219         struct smi_info *smi_info = data;
1220         /* We need to clear the IRQ flag for the BT interface. */
1221         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224         return si_irq_handler(irq, data);
1225 }
1226 
1227 static int smi_start_processing(void       *send_info,
1228                                 ipmi_smi_t intf)
1229 {
1230         struct smi_info *new_smi = send_info;
1231         int             enable = 0;
1232 
1233         new_smi->intf = intf;
1234 
1235         /* Set up the timer that drives the interface. */
1236         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1238 
1239         /* Try to claim any interrupts. */
1240         if (new_smi->irq_setup)
1241                 new_smi->irq_setup(new_smi);
1242 
1243         /*
1244          * Check if the user forcefully enabled the daemon.
1245          */
1246         if (new_smi->intf_num < num_force_kipmid)
1247                 enable = force_kipmid[new_smi->intf_num];
1248         /*
1249          * The BT interface is efficient enough to not need a thread,
1250          * and there is no need for a thread if we have interrupts.
1251          */
1252         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253                 enable = 1;
1254 
1255         if (enable) {
1256                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257                                               "kipmi%d", new_smi->intf_num);
1258                 if (IS_ERR(new_smi->thread)) {
1259                         dev_notice(new_smi->dev, "Could not start"
1260                                    " kernel thread due to error %ld, only using"
1261                                    " timers to drive the interface\n",
1262                                    PTR_ERR(new_smi->thread));
1263                         new_smi->thread = NULL;
1264                 }
1265         }
1266 
1267         return 0;
1268 }
1269 
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271 {
1272         struct smi_info *smi = send_info;
1273 
1274         data->addr_src = smi->addr_source;
1275         data->dev = smi->dev;
1276         data->addr_info = smi->addr_info;
1277         get_device(smi->dev);
1278 
1279         return 0;
1280 }
1281 
1282 static void set_maintenance_mode(void *send_info, bool enable)
1283 {
1284         struct smi_info   *smi_info = send_info;
1285 
1286         if (!enable)
1287                 atomic_set(&smi_info->req_events, 0);
1288 }
1289 
1290 static const struct ipmi_smi_handlers handlers = {
1291         .owner                  = THIS_MODULE,
1292         .start_processing       = smi_start_processing,
1293         .get_smi_info           = get_smi_info,
1294         .sender                 = sender,
1295         .request_events         = request_events,
1296         .set_need_watch         = set_need_watch,
1297         .set_maintenance_mode   = set_maintenance_mode,
1298         .set_run_to_completion  = set_run_to_completion,
1299         .flush_messages         = flush_messages,
1300         .poll                   = poll,
1301 };
1302 
1303 /*
1304  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1306  */
1307 
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1311 
1312 #define DEFAULT_REGSPACING      1
1313 #define DEFAULT_REGSIZE         1
1314 
1315 #ifdef CONFIG_ACPI
1316 static bool          si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool          si_trydmi = true;
1320 #endif
1321 static bool          si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool          si_trypci = true;
1324 #endif
1325 static char          *si_type[SI_MAX_PARMS];
1326 #define MAX_SI_TYPE_STR 30
1327 static char          si_type_str[MAX_SI_TYPE_STR];
1328 static unsigned long addrs[SI_MAX_PARMS];
1329 static unsigned int num_addrs;
1330 static unsigned int  ports[SI_MAX_PARMS];
1331 static unsigned int num_ports;
1332 static int           irqs[SI_MAX_PARMS];
1333 static unsigned int num_irqs;
1334 static int           regspacings[SI_MAX_PARMS];
1335 static unsigned int num_regspacings;
1336 static int           regsizes[SI_MAX_PARMS];
1337 static unsigned int num_regsizes;
1338 static int           regshifts[SI_MAX_PARMS];
1339 static unsigned int num_regshifts;
1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs;
1342 
1343 #define IPMI_IO_ADDR_SPACE  0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1346 
1347 static int hotmod_handler(const char *val, struct kernel_param *kp);
1348 
1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1351                  " Documentation/IPMI.txt in the kernel sources for the"
1352                  " gory details.");
1353 
1354 #ifdef CONFIG_ACPI
1355 module_param_named(tryacpi, si_tryacpi, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357                  " default scan of the interfaces identified via ACPI");
1358 #endif
1359 #ifdef CONFIG_DMI
1360 module_param_named(trydmi, si_trydmi, bool, 0);
1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1362                  " default scan of the interfaces identified via DMI");
1363 #endif
1364 module_param_named(tryplatform, si_tryplatform, bool, 0);
1365 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1366                  " default scan of the interfaces identified via platform"
1367                  " interfaces like openfirmware");
1368 #ifdef CONFIG_PCI
1369 module_param_named(trypci, si_trypci, bool, 0);
1370 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1371                  " default scan of the interfaces identified via pci");
1372 #endif
1373 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1374 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1375                  " interface separated by commas.  The types are 'kcs',"
1376                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1377                  " the first interface to kcs and the second to bt");
1378 module_param_array(addrs, ulong, &num_addrs, 0);
1379 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1380                  " addresses separated by commas.  Only use if an interface"
1381                  " is in memory.  Otherwise, set it to zero or leave"
1382                  " it blank.");
1383 module_param_array(ports, uint, &num_ports, 0);
1384 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1385                  " addresses separated by commas.  Only use if an interface"
1386                  " is a port.  Otherwise, set it to zero or leave"
1387                  " it blank.");
1388 module_param_array(irqs, int, &num_irqs, 0);
1389 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1390                  " addresses separated by commas.  Only use if an interface"
1391                  " has an interrupt.  Otherwise, set it to zero or leave"
1392                  " it blank.");
1393 module_param_array(regspacings, int, &num_regspacings, 0);
1394 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1395                  " and each successive register used by the interface.  For"
1396                  " instance, if the start address is 0xca2 and the spacing"
1397                  " is 2, then the second address is at 0xca4.  Defaults"
1398                  " to 1.");
1399 module_param_array(regsizes, int, &num_regsizes, 0);
1400 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1401                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1402                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1403                  " the 8-bit IPMI register has to be read from a larger"
1404                  " register.");
1405 module_param_array(regshifts, int, &num_regshifts, 0);
1406 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1407                  " IPMI register, in bits.  For instance, if the data"
1408                  " is read from a 32-bit word and the IPMI data is in"
1409                  " bit 8-15, then the shift would be 8");
1410 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1411 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1412                  " the controller.  Normally this is 0x20, but can be"
1413                  " overridden by this parm.  This is an array indexed"
1414                  " by interface number.");
1415 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1416 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1417                  " disabled(0).  Normally the IPMI driver auto-detects"
1418                  " this, but the value may be overridden by this parm.");
1419 module_param(unload_when_empty, bool, 0);
1420 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1421                  " specified or found, default is 1.  Setting to 0"
1422                  " is useful for hot add of devices using hotmod.");
1423 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1424 MODULE_PARM_DESC(kipmid_max_busy_us,
1425                  "Max time (in microseconds) to busy-wait for IPMI data before"
1426                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1427                  " if kipmid is using up a lot of CPU time.");
1428 
1429 
1430 static void std_irq_cleanup(struct smi_info *info)
1431 {
1432         if (info->si_type == SI_BT)
1433                 /* Disable the interrupt in the BT interface. */
1434                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1435         free_irq(info->irq, info);
1436 }
1437 
1438 static int std_irq_setup(struct smi_info *info)
1439 {
1440         int rv;
1441 
1442         if (!info->irq)
1443                 return 0;
1444 
1445         if (info->si_type == SI_BT) {
1446                 rv = request_irq(info->irq,
1447                                  si_bt_irq_handler,
1448                                  IRQF_SHARED,
1449                                  DEVICE_NAME,
1450                                  info);
1451                 if (!rv)
1452                         /* Enable the interrupt in the BT interface. */
1453                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1454                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1455         } else
1456                 rv = request_irq(info->irq,
1457                                  si_irq_handler,
1458                                  IRQF_SHARED,
1459                                  DEVICE_NAME,
1460                                  info);
1461         if (rv) {
1462                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1463                          " running polled\n",
1464                          DEVICE_NAME, info->irq);
1465                 info->irq = 0;
1466         } else {
1467                 info->irq_cleanup = std_irq_cleanup;
1468                 dev_info(info->dev, "Using irq %d\n", info->irq);
1469         }
1470 
1471         return rv;
1472 }
1473 
1474 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1475 {
1476         unsigned int addr = io->addr_data;
1477 
1478         return inb(addr + (offset * io->regspacing));
1479 }
1480 
1481 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1482                       unsigned char b)
1483 {
1484         unsigned int addr = io->addr_data;
1485 
1486         outb(b, addr + (offset * io->regspacing));
1487 }
1488 
1489 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1490 {
1491         unsigned int addr = io->addr_data;
1492 
1493         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1494 }
1495 
1496 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1497                       unsigned char b)
1498 {
1499         unsigned int addr = io->addr_data;
1500 
1501         outw(b << io->regshift, addr + (offset * io->regspacing));
1502 }
1503 
1504 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1505 {
1506         unsigned int addr = io->addr_data;
1507 
1508         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1509 }
1510 
1511 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1512                       unsigned char b)
1513 {
1514         unsigned int addr = io->addr_data;
1515 
1516         outl(b << io->regshift, addr+(offset * io->regspacing));
1517 }
1518 
1519 static void port_cleanup(struct smi_info *info)
1520 {
1521         unsigned int addr = info->io.addr_data;
1522         int          idx;
1523 
1524         if (addr) {
1525                 for (idx = 0; idx < info->io_size; idx++)
1526                         release_region(addr + idx * info->io.regspacing,
1527                                        info->io.regsize);
1528         }
1529 }
1530 
1531 static int port_setup(struct smi_info *info)
1532 {
1533         unsigned int addr = info->io.addr_data;
1534         int          idx;
1535 
1536         if (!addr)
1537                 return -ENODEV;
1538 
1539         info->io_cleanup = port_cleanup;
1540 
1541         /*
1542          * Figure out the actual inb/inw/inl/etc routine to use based
1543          * upon the register size.
1544          */
1545         switch (info->io.regsize) {
1546         case 1:
1547                 info->io.inputb = port_inb;
1548                 info->io.outputb = port_outb;
1549                 break;
1550         case 2:
1551                 info->io.inputb = port_inw;
1552                 info->io.outputb = port_outw;
1553                 break;
1554         case 4:
1555                 info->io.inputb = port_inl;
1556                 info->io.outputb = port_outl;
1557                 break;
1558         default:
1559                 dev_warn(info->dev, "Invalid register size: %d\n",
1560                          info->io.regsize);
1561                 return -EINVAL;
1562         }
1563 
1564         /*
1565          * Some BIOSes reserve disjoint I/O regions in their ACPI
1566          * tables.  This causes problems when trying to register the
1567          * entire I/O region.  Therefore we must register each I/O
1568          * port separately.
1569          */
1570         for (idx = 0; idx < info->io_size; idx++) {
1571                 if (request_region(addr + idx * info->io.regspacing,
1572                                    info->io.regsize, DEVICE_NAME) == NULL) {
1573                         /* Undo allocations */
1574                         while (idx--)
1575                                 release_region(addr + idx * info->io.regspacing,
1576                                                info->io.regsize);
1577                         return -EIO;
1578                 }
1579         }
1580         return 0;
1581 }
1582 
1583 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1584                                   unsigned int offset)
1585 {
1586         return readb((io->addr)+(offset * io->regspacing));
1587 }
1588 
1589 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1590                           unsigned char b)
1591 {
1592         writeb(b, (io->addr)+(offset * io->regspacing));
1593 }
1594 
1595 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1596                                   unsigned int offset)
1597 {
1598         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1599                 & 0xff;
1600 }
1601 
1602 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1603                           unsigned char b)
1604 {
1605         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1606 }
1607 
1608 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1609                                   unsigned int offset)
1610 {
1611         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1612                 & 0xff;
1613 }
1614 
1615 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1616                           unsigned char b)
1617 {
1618         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1619 }
1620 
1621 #ifdef readq
1622 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1623 {
1624         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1625                 & 0xff;
1626 }
1627 
1628 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1629                      unsigned char b)
1630 {
1631         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1632 }
1633 #endif
1634 
1635 static void mem_region_cleanup(struct smi_info *info, int num)
1636 {
1637         unsigned long addr = info->io.addr_data;
1638         int idx;
1639 
1640         for (idx = 0; idx < num; idx++)
1641                 release_mem_region(addr + idx * info->io.regspacing,
1642                                    info->io.regsize);
1643 }
1644 
1645 static void mem_cleanup(struct smi_info *info)
1646 {
1647         if (info->io.addr) {
1648                 iounmap(info->io.addr);
1649                 mem_region_cleanup(info, info->io_size);
1650         }
1651 }
1652 
1653 static int mem_setup(struct smi_info *info)
1654 {
1655         unsigned long addr = info->io.addr_data;
1656         int           mapsize, idx;
1657 
1658         if (!addr)
1659                 return -ENODEV;
1660 
1661         info->io_cleanup = mem_cleanup;
1662 
1663         /*
1664          * Figure out the actual readb/readw/readl/etc routine to use based
1665          * upon the register size.
1666          */
1667         switch (info->io.regsize) {
1668         case 1:
1669                 info->io.inputb = intf_mem_inb;
1670                 info->io.outputb = intf_mem_outb;
1671                 break;
1672         case 2:
1673                 info->io.inputb = intf_mem_inw;
1674                 info->io.outputb = intf_mem_outw;
1675                 break;
1676         case 4:
1677                 info->io.inputb = intf_mem_inl;
1678                 info->io.outputb = intf_mem_outl;
1679                 break;
1680 #ifdef readq
1681         case 8:
1682                 info->io.inputb = mem_inq;
1683                 info->io.outputb = mem_outq;
1684                 break;
1685 #endif
1686         default:
1687                 dev_warn(info->dev, "Invalid register size: %d\n",
1688                          info->io.regsize);
1689                 return -EINVAL;
1690         }
1691 
1692         /*
1693          * Some BIOSes reserve disjoint memory regions in their ACPI
1694          * tables.  This causes problems when trying to request the
1695          * entire region.  Therefore we must request each register
1696          * separately.
1697          */
1698         for (idx = 0; idx < info->io_size; idx++) {
1699                 if (request_mem_region(addr + idx * info->io.regspacing,
1700                                        info->io.regsize, DEVICE_NAME) == NULL) {
1701                         /* Undo allocations */
1702                         mem_region_cleanup(info, idx);
1703                         return -EIO;
1704                 }
1705         }
1706 
1707         /*
1708          * Calculate the total amount of memory to claim.  This is an
1709          * unusual looking calculation, but it avoids claiming any
1710          * more memory than it has to.  It will claim everything
1711          * between the first address to the end of the last full
1712          * register.
1713          */
1714         mapsize = ((info->io_size * info->io.regspacing)
1715                    - (info->io.regspacing - info->io.regsize));
1716         info->io.addr = ioremap(addr, mapsize);
1717         if (info->io.addr == NULL) {
1718                 mem_region_cleanup(info, info->io_size);
1719                 return -EIO;
1720         }
1721         return 0;
1722 }
1723 
1724 /*
1725  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1726  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1727  * Options are:
1728  *   rsp=<regspacing>
1729  *   rsi=<regsize>
1730  *   rsh=<regshift>
1731  *   irq=<irq>
1732  *   ipmb=<ipmb addr>
1733  */
1734 enum hotmod_op { HM_ADD, HM_REMOVE };
1735 struct hotmod_vals {
1736         const char *name;
1737         const int  val;
1738 };
1739 
1740 static const struct hotmod_vals hotmod_ops[] = {
1741         { "add",        HM_ADD },
1742         { "remove",     HM_REMOVE },
1743         { NULL }
1744 };
1745 
1746 static const struct hotmod_vals hotmod_si[] = {
1747         { "kcs",        SI_KCS },
1748         { "smic",       SI_SMIC },
1749         { "bt",         SI_BT },
1750         { NULL }
1751 };
1752 
1753 static const struct hotmod_vals hotmod_as[] = {
1754         { "mem",        IPMI_MEM_ADDR_SPACE },
1755         { "i/o",        IPMI_IO_ADDR_SPACE },
1756         { NULL }
1757 };
1758 
1759 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1760                      char **curr)
1761 {
1762         char *s;
1763         int  i;
1764 
1765         s = strchr(*curr, ',');
1766         if (!s) {
1767                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1768                 return -EINVAL;
1769         }
1770         *s = '\0';
1771         s++;
1772         for (i = 0; v[i].name; i++) {
1773                 if (strcmp(*curr, v[i].name) == 0) {
1774                         *val = v[i].val;
1775                         *curr = s;
1776                         return 0;
1777                 }
1778         }
1779 
1780         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1781         return -EINVAL;
1782 }
1783 
1784 static int check_hotmod_int_op(const char *curr, const char *option,
1785                                const char *name, int *val)
1786 {
1787         char *n;
1788 
1789         if (strcmp(curr, name) == 0) {
1790                 if (!option) {
1791                         printk(KERN_WARNING PFX
1792                                "No option given for '%s'\n",
1793                                curr);
1794                         return -EINVAL;
1795                 }
1796                 *val = simple_strtoul(option, &n, 0);
1797                 if ((*n != '\0') || (*option == '\0')) {
1798                         printk(KERN_WARNING PFX
1799                                "Bad option given for '%s'\n",
1800                                curr);
1801                         return -EINVAL;
1802                 }
1803                 return 1;
1804         }
1805         return 0;
1806 }
1807 
1808 static struct smi_info *smi_info_alloc(void)
1809 {
1810         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1811 
1812         if (info)
1813                 spin_lock_init(&info->si_lock);
1814         return info;
1815 }
1816 
1817 static int hotmod_handler(const char *val, struct kernel_param *kp)
1818 {
1819         char *str = kstrdup(val, GFP_KERNEL);
1820         int  rv;
1821         char *next, *curr, *s, *n, *o;
1822         enum hotmod_op op;
1823         enum si_type si_type;
1824         int  addr_space;
1825         unsigned long addr;
1826         int regspacing;
1827         int regsize;
1828         int regshift;
1829         int irq;
1830         int ipmb;
1831         int ival;
1832         int len;
1833         struct smi_info *info;
1834 
1835         if (!str)
1836                 return -ENOMEM;
1837 
1838         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1839         len = strlen(str);
1840         ival = len - 1;
1841         while ((ival >= 0) && isspace(str[ival])) {
1842                 str[ival] = '\0';
1843                 ival--;
1844         }
1845 
1846         for (curr = str; curr; curr = next) {
1847                 regspacing = 1;
1848                 regsize = 1;
1849                 regshift = 0;
1850                 irq = 0;
1851                 ipmb = 0; /* Choose the default if not specified */
1852 
1853                 next = strchr(curr, ':');
1854                 if (next) {
1855                         *next = '\0';
1856                         next++;
1857                 }
1858 
1859                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1860                 if (rv)
1861                         break;
1862                 op = ival;
1863 
1864                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1865                 if (rv)
1866                         break;
1867                 si_type = ival;
1868 
1869                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1870                 if (rv)
1871                         break;
1872 
1873                 s = strchr(curr, ',');
1874                 if (s) {
1875                         *s = '\0';
1876                         s++;
1877                 }
1878                 addr = simple_strtoul(curr, &n, 0);
1879                 if ((*n != '\0') || (*curr == '\0')) {
1880                         printk(KERN_WARNING PFX "Invalid hotmod address"
1881                                " '%s'\n", curr);
1882                         break;
1883                 }
1884 
1885                 while (s) {
1886                         curr = s;
1887                         s = strchr(curr, ',');
1888                         if (s) {
1889                                 *s = '\0';
1890                                 s++;
1891                         }
1892                         o = strchr(curr, '=');
1893                         if (o) {
1894                                 *o = '\0';
1895                                 o++;
1896                         }
1897                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1898                         if (rv < 0)
1899                                 goto out;
1900                         else if (rv)
1901                                 continue;
1902                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1903                         if (rv < 0)
1904                                 goto out;
1905                         else if (rv)
1906                                 continue;
1907                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1908                         if (rv < 0)
1909                                 goto out;
1910                         else if (rv)
1911                                 continue;
1912                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1913                         if (rv < 0)
1914                                 goto out;
1915                         else if (rv)
1916                                 continue;
1917                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1918                         if (rv < 0)
1919                                 goto out;
1920                         else if (rv)
1921                                 continue;
1922 
1923                         rv = -EINVAL;
1924                         printk(KERN_WARNING PFX
1925                                "Invalid hotmod option '%s'\n",
1926                                curr);
1927                         goto out;
1928                 }
1929 
1930                 if (op == HM_ADD) {
1931                         info = smi_info_alloc();
1932                         if (!info) {
1933                                 rv = -ENOMEM;
1934                                 goto out;
1935                         }
1936 
1937                         info->addr_source = SI_HOTMOD;
1938                         info->si_type = si_type;
1939                         info->io.addr_data = addr;
1940                         info->io.addr_type = addr_space;
1941                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1942                                 info->io_setup = mem_setup;
1943                         else
1944                                 info->io_setup = port_setup;
1945 
1946                         info->io.addr = NULL;
1947                         info->io.regspacing = regspacing;
1948                         if (!info->io.regspacing)
1949                                 info->io.regspacing = DEFAULT_REGSPACING;
1950                         info->io.regsize = regsize;
1951                         if (!info->io.regsize)
1952                                 info->io.regsize = DEFAULT_REGSPACING;
1953                         info->io.regshift = regshift;
1954                         info->irq = irq;
1955                         if (info->irq)
1956                                 info->irq_setup = std_irq_setup;
1957                         info->slave_addr = ipmb;
1958 
1959                         rv = add_smi(info);
1960                         if (rv) {
1961                                 kfree(info);
1962                                 goto out;
1963                         }
1964                         rv = try_smi_init(info);
1965                         if (rv) {
1966                                 cleanup_one_si(info);
1967                                 goto out;
1968                         }
1969                 } else {
1970                         /* remove */
1971                         struct smi_info *e, *tmp_e;
1972 
1973                         mutex_lock(&smi_infos_lock);
1974                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1975                                 if (e->io.addr_type != addr_space)
1976                                         continue;
1977                                 if (e->si_type != si_type)
1978                                         continue;
1979                                 if (e->io.addr_data == addr)
1980                                         cleanup_one_si(e);
1981                         }
1982                         mutex_unlock(&smi_infos_lock);
1983                 }
1984         }
1985         rv = len;
1986 out:
1987         kfree(str);
1988         return rv;
1989 }
1990 
1991 static int hardcode_find_bmc(void)
1992 {
1993         int ret = -ENODEV;
1994         int             i;
1995         struct smi_info *info;
1996 
1997         for (i = 0; i < SI_MAX_PARMS; i++) {
1998                 if (!ports[i] && !addrs[i])
1999                         continue;
2000 
2001                 info = smi_info_alloc();
2002                 if (!info)
2003                         return -ENOMEM;
2004 
2005                 info->addr_source = SI_HARDCODED;
2006                 printk(KERN_INFO PFX "probing via hardcoded address\n");
2007 
2008                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2009                         info->si_type = SI_KCS;
2010                 } else if (strcmp(si_type[i], "smic") == 0) {
2011                         info->si_type = SI_SMIC;
2012                 } else if (strcmp(si_type[i], "bt") == 0) {
2013                         info->si_type = SI_BT;
2014                 } else {
2015                         printk(KERN_WARNING PFX "Interface type specified "
2016                                "for interface %d, was invalid: %s\n",
2017                                i, si_type[i]);
2018                         kfree(info);
2019                         continue;
2020                 }
2021 
2022                 if (ports[i]) {
2023                         /* An I/O port */
2024                         info->io_setup = port_setup;
2025                         info->io.addr_data = ports[i];
2026                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
2027                 } else if (addrs[i]) {
2028                         /* A memory port */
2029                         info->io_setup = mem_setup;
2030                         info->io.addr_data = addrs[i];
2031                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2032                 } else {
2033                         printk(KERN_WARNING PFX "Interface type specified "
2034                                "for interface %d, but port and address were "
2035                                "not set or set to zero.\n", i);
2036                         kfree(info);
2037                         continue;
2038                 }
2039 
2040                 info->io.addr = NULL;
2041                 info->io.regspacing = regspacings[i];
2042                 if (!info->io.regspacing)
2043                         info->io.regspacing = DEFAULT_REGSPACING;
2044                 info->io.regsize = regsizes[i];
2045                 if (!info->io.regsize)
2046                         info->io.regsize = DEFAULT_REGSPACING;
2047                 info->io.regshift = regshifts[i];
2048                 info->irq = irqs[i];
2049                 if (info->irq)
2050                         info->irq_setup = std_irq_setup;
2051                 info->slave_addr = slave_addrs[i];
2052 
2053                 if (!add_smi(info)) {
2054                         if (try_smi_init(info))
2055                                 cleanup_one_si(info);
2056                         ret = 0;
2057                 } else {
2058                         kfree(info);
2059                 }
2060         }
2061         return ret;
2062 }
2063 
2064 #ifdef CONFIG_ACPI
2065 
2066 /*
2067  * Once we get an ACPI failure, we don't try any more, because we go
2068  * through the tables sequentially.  Once we don't find a table, there
2069  * are no more.
2070  */
2071 static int acpi_failure;
2072 
2073 /* For GPE-type interrupts. */
2074 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2075         u32 gpe_number, void *context)
2076 {
2077         struct smi_info *smi_info = context;
2078         unsigned long   flags;
2079 
2080         spin_lock_irqsave(&(smi_info->si_lock), flags);
2081 
2082         smi_inc_stat(smi_info, interrupts);
2083 
2084         debug_timestamp("ACPI_GPE");
2085 
2086         smi_event_handler(smi_info, 0);
2087         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2088 
2089         return ACPI_INTERRUPT_HANDLED;
2090 }
2091 
2092 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2093 {
2094         if (!info->irq)
2095                 return;
2096 
2097         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2098 }
2099 
2100 static int acpi_gpe_irq_setup(struct smi_info *info)
2101 {
2102         acpi_status status;
2103 
2104         if (!info->irq)
2105                 return 0;
2106 
2107         status = acpi_install_gpe_handler(NULL,
2108                                           info->irq,
2109                                           ACPI_GPE_LEVEL_TRIGGERED,
2110                                           &ipmi_acpi_gpe,
2111                                           info);
2112         if (status != AE_OK) {
2113                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2114                          " running polled\n", DEVICE_NAME, info->irq);
2115                 info->irq = 0;
2116                 return -EINVAL;
2117         } else {
2118                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2119                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2120                 return 0;
2121         }
2122 }
2123 
2124 /*
2125  * Defined at
2126  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2127  */
2128 struct SPMITable {
2129         s8      Signature[4];
2130         u32     Length;
2131         u8      Revision;
2132         u8      Checksum;
2133         s8      OEMID[6];
2134         s8      OEMTableID[8];
2135         s8      OEMRevision[4];
2136         s8      CreatorID[4];
2137         s8      CreatorRevision[4];
2138         u8      InterfaceType;
2139         u8      IPMIlegacy;
2140         s16     SpecificationRevision;
2141 
2142         /*
2143          * Bit 0 - SCI interrupt supported
2144          * Bit 1 - I/O APIC/SAPIC
2145          */
2146         u8      InterruptType;
2147 
2148         /*
2149          * If bit 0 of InterruptType is set, then this is the SCI
2150          * interrupt in the GPEx_STS register.
2151          */
2152         u8      GPE;
2153 
2154         s16     Reserved;
2155 
2156         /*
2157          * If bit 1 of InterruptType is set, then this is the I/O
2158          * APIC/SAPIC interrupt.
2159          */
2160         u32     GlobalSystemInterrupt;
2161 
2162         /* The actual register address. */
2163         struct acpi_generic_address addr;
2164 
2165         u8      UID[4];
2166 
2167         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2168 };
2169 
2170 static int try_init_spmi(struct SPMITable *spmi)
2171 {
2172         struct smi_info  *info;
2173         int rv;
2174 
2175         if (spmi->IPMIlegacy != 1) {
2176                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2177                 return -ENODEV;
2178         }
2179 
2180         info = smi_info_alloc();
2181         if (!info) {
2182                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2183                 return -ENOMEM;
2184         }
2185 
2186         info->addr_source = SI_SPMI;
2187         printk(KERN_INFO PFX "probing via SPMI\n");
2188 
2189         /* Figure out the interface type. */
2190         switch (spmi->InterfaceType) {
2191         case 1: /* KCS */
2192                 info->si_type = SI_KCS;
2193                 break;
2194         case 2: /* SMIC */
2195                 info->si_type = SI_SMIC;
2196                 break;
2197         case 3: /* BT */
2198                 info->si_type = SI_BT;
2199                 break;
2200         case 4: /* SSIF, just ignore */
2201                 kfree(info);
2202                 return -EIO;
2203         default:
2204                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2205                        spmi->InterfaceType);
2206                 kfree(info);
2207                 return -EIO;
2208         }
2209 
2210         if (spmi->InterruptType & 1) {
2211                 /* We've got a GPE interrupt. */
2212                 info->irq = spmi->GPE;
2213                 info->irq_setup = acpi_gpe_irq_setup;
2214         } else if (spmi->InterruptType & 2) {
2215                 /* We've got an APIC/SAPIC interrupt. */
2216                 info->irq = spmi->GlobalSystemInterrupt;
2217                 info->irq_setup = std_irq_setup;
2218         } else {
2219                 /* Use the default interrupt setting. */
2220                 info->irq = 0;
2221                 info->irq_setup = NULL;
2222         }
2223 
2224         if (spmi->addr.bit_width) {
2225                 /* A (hopefully) properly formed register bit width. */
2226                 info->io.regspacing = spmi->addr.bit_width / 8;
2227         } else {
2228                 info->io.regspacing = DEFAULT_REGSPACING;
2229         }
2230         info->io.regsize = info->io.regspacing;
2231         info->io.regshift = spmi->addr.bit_offset;
2232 
2233         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2234                 info->io_setup = mem_setup;
2235                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2236         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2237                 info->io_setup = port_setup;
2238                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2239         } else {
2240                 kfree(info);
2241                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2242                 return -EIO;
2243         }
2244         info->io.addr_data = spmi->addr.address;
2245 
2246         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2247                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2248                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2249                  info->irq);
2250 
2251         rv = add_smi(info);
2252         if (rv)
2253                 kfree(info);
2254 
2255         return rv;
2256 }
2257 
2258 static void spmi_find_bmc(void)
2259 {
2260         acpi_status      status;
2261         struct SPMITable *spmi;
2262         int              i;
2263 
2264         if (acpi_disabled)
2265                 return;
2266 
2267         if (acpi_failure)
2268                 return;
2269 
2270         for (i = 0; ; i++) {
2271                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2272                                         (struct acpi_table_header **)&spmi);
2273                 if (status != AE_OK)
2274                         return;
2275 
2276                 try_init_spmi(spmi);
2277         }
2278 }
2279 #endif
2280 
2281 #ifdef CONFIG_DMI
2282 struct dmi_ipmi_data {
2283         u8              type;
2284         u8              addr_space;
2285         unsigned long   base_addr;
2286         u8              irq;
2287         u8              offset;
2288         u8              slave_addr;
2289 };
2290 
2291 static int decode_dmi(const struct dmi_header *dm,
2292                                 struct dmi_ipmi_data *dmi)
2293 {
2294         const u8        *data = (const u8 *)dm;
2295         unsigned long   base_addr;
2296         u8              reg_spacing;
2297         u8              len = dm->length;
2298 
2299         dmi->type = data[4];
2300 
2301         memcpy(&base_addr, data+8, sizeof(unsigned long));
2302         if (len >= 0x11) {
2303                 if (base_addr & 1) {
2304                         /* I/O */
2305                         base_addr &= 0xFFFE;
2306                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2307                 } else
2308                         /* Memory */
2309                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2310 
2311                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2312                    is odd. */
2313                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2314 
2315                 dmi->irq = data[0x11];
2316 
2317                 /* The top two bits of byte 0x10 hold the register spacing. */
2318                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2319                 switch (reg_spacing) {
2320                 case 0x00: /* Byte boundaries */
2321                     dmi->offset = 1;
2322                     break;
2323                 case 0x01: /* 32-bit boundaries */
2324                     dmi->offset = 4;
2325                     break;
2326                 case 0x02: /* 16-byte boundaries */
2327                     dmi->offset = 16;
2328                     break;
2329                 default:
2330                     /* Some other interface, just ignore it. */
2331                     return -EIO;
2332                 }
2333         } else {
2334                 /* Old DMI spec. */
2335                 /*
2336                  * Note that technically, the lower bit of the base
2337                  * address should be 1 if the address is I/O and 0 if
2338                  * the address is in memory.  So many systems get that
2339                  * wrong (and all that I have seen are I/O) so we just
2340                  * ignore that bit and assume I/O.  Systems that use
2341                  * memory should use the newer spec, anyway.
2342                  */
2343                 dmi->base_addr = base_addr & 0xfffe;
2344                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2345                 dmi->offset = 1;
2346         }
2347 
2348         dmi->slave_addr = data[6];
2349 
2350         return 0;
2351 }
2352 
2353 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2354 {
2355         struct smi_info *info;
2356 
2357         info = smi_info_alloc();
2358         if (!info) {
2359                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2360                 return;
2361         }
2362 
2363         info->addr_source = SI_SMBIOS;
2364         printk(KERN_INFO PFX "probing via SMBIOS\n");
2365 
2366         switch (ipmi_data->type) {
2367         case 0x01: /* KCS */
2368                 info->si_type = SI_KCS;
2369                 break;
2370         case 0x02: /* SMIC */
2371                 info->si_type = SI_SMIC;
2372                 break;
2373         case 0x03: /* BT */
2374                 info->si_type = SI_BT;
2375                 break;
2376         default:
2377                 kfree(info);
2378                 return;
2379         }
2380 
2381         switch (ipmi_data->addr_space) {
2382         case IPMI_MEM_ADDR_SPACE:
2383                 info->io_setup = mem_setup;
2384                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2385                 break;
2386 
2387         case IPMI_IO_ADDR_SPACE:
2388                 info->io_setup = port_setup;
2389                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2390                 break;
2391 
2392         default:
2393                 kfree(info);
2394                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2395                        ipmi_data->addr_space);
2396                 return;
2397         }
2398         info->io.addr_data = ipmi_data->base_addr;
2399 
2400         info->io.regspacing = ipmi_data->offset;
2401         if (!info->io.regspacing)
2402                 info->io.regspacing = DEFAULT_REGSPACING;
2403         info->io.regsize = DEFAULT_REGSPACING;
2404         info->io.regshift = 0;
2405 
2406         info->slave_addr = ipmi_data->slave_addr;
2407 
2408         info->irq = ipmi_data->irq;
2409         if (info->irq)
2410                 info->irq_setup = std_irq_setup;
2411 
2412         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2413                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2414                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2415                  info->irq);
2416 
2417         if (add_smi(info))
2418                 kfree(info);
2419 }
2420 
2421 static void dmi_find_bmc(void)
2422 {
2423         const struct dmi_device *dev = NULL;
2424         struct dmi_ipmi_data data;
2425         int                  rv;
2426 
2427         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2428                 memset(&data, 0, sizeof(data));
2429                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2430                                 &data);
2431                 if (!rv)
2432                         try_init_dmi(&data);
2433         }
2434 }
2435 #endif /* CONFIG_DMI */
2436 
2437 #ifdef CONFIG_PCI
2438 
2439 #define PCI_ERMC_CLASSCODE              0x0C0700
2440 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2441 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2442 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2443 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2444 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2445 
2446 #define PCI_HP_VENDOR_ID    0x103C
2447 #define PCI_MMC_DEVICE_ID   0x121A
2448 #define PCI_MMC_ADDR_CW     0x10
2449 
2450 static void ipmi_pci_cleanup(struct smi_info *info)
2451 {
2452         struct pci_dev *pdev = info->addr_source_data;
2453 
2454         pci_disable_device(pdev);
2455 }
2456 
2457 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2458 {
2459         if (info->si_type == SI_KCS) {
2460                 unsigned char   status;
2461                 int             regspacing;
2462 
2463                 info->io.regsize = DEFAULT_REGSIZE;
2464                 info->io.regshift = 0;
2465                 info->io_size = 2;
2466                 info->handlers = &kcs_smi_handlers;
2467 
2468                 /* detect 1, 4, 16byte spacing */
2469                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2470                         info->io.regspacing = regspacing;
2471                         if (info->io_setup(info)) {
2472                                 dev_err(info->dev,
2473                                         "Could not setup I/O space\n");
2474                                 return DEFAULT_REGSPACING;
2475                         }
2476                         /* write invalid cmd */
2477                         info->io.outputb(&info->io, 1, 0x10);
2478                         /* read status back */
2479                         status = info->io.inputb(&info->io, 1);
2480                         info->io_cleanup(info);
2481                         if (status)
2482                                 return regspacing;
2483                         regspacing *= 4;
2484                 }
2485         }
2486         return DEFAULT_REGSPACING;
2487 }
2488 
2489 static int ipmi_pci_probe(struct pci_dev *pdev,
2490                                     const struct pci_device_id *ent)
2491 {
2492         int rv;
2493         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2494         struct smi_info *info;
2495 
2496         info = smi_info_alloc();
2497         if (!info)
2498                 return -ENOMEM;
2499 
2500         info->addr_source = SI_PCI;
2501         dev_info(&pdev->dev, "probing via PCI");
2502 
2503         switch (class_type) {
2504         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2505                 info->si_type = SI_SMIC;
2506                 break;
2507 
2508         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2509                 info->si_type = SI_KCS;
2510                 break;
2511 
2512         case PCI_ERMC_CLASSCODE_TYPE_BT:
2513                 info->si_type = SI_BT;
2514                 break;
2515 
2516         default:
2517                 kfree(info);
2518                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2519                 return -ENOMEM;
2520         }
2521 
2522         rv = pci_enable_device(pdev);
2523         if (rv) {
2524                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2525                 kfree(info);
2526                 return rv;
2527         }
2528 
2529         info->addr_source_cleanup = ipmi_pci_cleanup;
2530         info->addr_source_data = pdev;
2531 
2532         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2533                 info->io_setup = port_setup;
2534                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2535         } else {
2536                 info->io_setup = mem_setup;
2537                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2538         }
2539         info->io.addr_data = pci_resource_start(pdev, 0);
2540 
2541         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2542         info->io.regsize = DEFAULT_REGSIZE;
2543         info->io.regshift = 0;
2544 
2545         info->irq = pdev->irq;
2546         if (info->irq)
2547                 info->irq_setup = std_irq_setup;
2548 
2549         info->dev = &pdev->dev;
2550         pci_set_drvdata(pdev, info);
2551 
2552         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2553                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2554                 info->irq);
2555 
2556         rv = add_smi(info);
2557         if (rv) {
2558                 kfree(info);
2559                 pci_disable_device(pdev);
2560         }
2561 
2562         return rv;
2563 }
2564 
2565 static void ipmi_pci_remove(struct pci_dev *pdev)
2566 {
2567         struct smi_info *info = pci_get_drvdata(pdev);
2568         cleanup_one_si(info);
2569 }
2570 
2571 static const struct pci_device_id ipmi_pci_devices[] = {
2572         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2573         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2574         { 0, }
2575 };
2576 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2577 
2578 static struct pci_driver ipmi_pci_driver = {
2579         .name =         DEVICE_NAME,
2580         .id_table =     ipmi_pci_devices,
2581         .probe =        ipmi_pci_probe,
2582         .remove =       ipmi_pci_remove,
2583 };
2584 #endif /* CONFIG_PCI */
2585 
2586 #ifdef CONFIG_OF
2587 static const struct of_device_id of_ipmi_match[] = {
2588         { .type = "ipmi", .compatible = "ipmi-kcs",
2589           .data = (void *)(unsigned long) SI_KCS },
2590         { .type = "ipmi", .compatible = "ipmi-smic",
2591           .data = (void *)(unsigned long) SI_SMIC },
2592         { .type = "ipmi", .compatible = "ipmi-bt",
2593           .data = (void *)(unsigned long) SI_BT },
2594         {},
2595 };
2596 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2597 
2598 static int of_ipmi_probe(struct platform_device *dev)
2599 {
2600         const struct of_device_id *match;
2601         struct smi_info *info;
2602         struct resource resource;
2603         const __be32 *regsize, *regspacing, *regshift;
2604         struct device_node *np = dev->dev.of_node;
2605         int ret;
2606         int proplen;
2607 
2608         dev_info(&dev->dev, "probing via device tree\n");
2609 
2610         match = of_match_device(of_ipmi_match, &dev->dev);
2611         if (!match)
2612                 return -ENODEV;
2613 
2614         if (!of_device_is_available(np))
2615                 return -EINVAL;
2616 
2617         ret = of_address_to_resource(np, 0, &resource);
2618         if (ret) {
2619                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2620                 return ret;
2621         }
2622 
2623         regsize = of_get_property(np, "reg-size", &proplen);
2624         if (regsize && proplen != 4) {
2625                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2626                 return -EINVAL;
2627         }
2628 
2629         regspacing = of_get_property(np, "reg-spacing", &proplen);
2630         if (regspacing && proplen != 4) {
2631                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2632                 return -EINVAL;
2633         }
2634 
2635         regshift = of_get_property(np, "reg-shift", &proplen);
2636         if (regshift && proplen != 4) {
2637                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2638                 return -EINVAL;
2639         }
2640 
2641         info = smi_info_alloc();
2642 
2643         if (!info) {
2644                 dev_err(&dev->dev,
2645                         "could not allocate memory for OF probe\n");
2646                 return -ENOMEM;
2647         }
2648 
2649         info->si_type           = (enum si_type) match->data;
2650         info->addr_source       = SI_DEVICETREE;
2651         info->irq_setup         = std_irq_setup;
2652 
2653         if (resource.flags & IORESOURCE_IO) {
2654                 info->io_setup          = port_setup;
2655                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2656         } else {
2657                 info->io_setup          = mem_setup;
2658                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2659         }
2660 
2661         info->io.addr_data      = resource.start;
2662 
2663         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2664         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2665         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2666 
2667         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2668         info->dev               = &dev->dev;
2669 
2670         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2671                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2672                 info->irq);
2673 
2674         dev_set_drvdata(&dev->dev, info);
2675 
2676         ret = add_smi(info);
2677         if (ret) {
2678                 kfree(info);
2679                 return ret;
2680         }
2681         return 0;
2682 }
2683 #else
2684 #define of_ipmi_match NULL
2685 static int of_ipmi_probe(struct platform_device *dev)
2686 {
2687         return -ENODEV;
2688 }
2689 #endif
2690 
2691 #ifdef CONFIG_ACPI
2692 static int acpi_ipmi_probe(struct platform_device *dev)
2693 {
2694         struct smi_info *info;
2695         struct resource *res, *res_second;
2696         acpi_handle handle;
2697         acpi_status status;
2698         unsigned long long tmp;
2699         int rv = -EINVAL;
2700 
2701         if (!si_tryacpi)
2702                return 0;
2703 
2704         handle = ACPI_HANDLE(&dev->dev);
2705         if (!handle)
2706                 return -ENODEV;
2707 
2708         info = smi_info_alloc();
2709         if (!info)
2710                 return -ENOMEM;
2711 
2712         info->addr_source = SI_ACPI;
2713         dev_info(&dev->dev, PFX "probing via ACPI\n");
2714 
2715         info->addr_info.acpi_info.acpi_handle = handle;
2716 
2717         /* _IFT tells us the interface type: KCS, BT, etc */
2718         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2719         if (ACPI_FAILURE(status)) {
2720                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2721                 goto err_free;
2722         }
2723 
2724         switch (tmp) {
2725         case 1:
2726                 info->si_type = SI_KCS;
2727                 break;
2728         case 2:
2729                 info->si_type = SI_SMIC;
2730                 break;
2731         case 3:
2732                 info->si_type = SI_BT;
2733                 break;
2734         case 4: /* SSIF, just ignore */
2735                 rv = -ENODEV;
2736                 goto err_free;
2737         default:
2738                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2739                 goto err_free;
2740         }
2741 
2742         res = platform_get_resource(dev, IORESOURCE_IO, 0);
2743         if (res) {
2744                 info->io_setup = port_setup;
2745                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2746         } else {
2747                 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2748                 if (res) {
2749                         info->io_setup = mem_setup;
2750                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2751                 }
2752         }
2753         if (!res) {
2754                 dev_err(&dev->dev, "no I/O or memory address\n");
2755                 goto err_free;
2756         }
2757         info->io.addr_data = res->start;
2758 
2759         info->io.regspacing = DEFAULT_REGSPACING;
2760         res_second = platform_get_resource(dev,
2761                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2762                                         IORESOURCE_IO : IORESOURCE_MEM,
2763                                1);
2764         if (res_second) {
2765                 if (res_second->start > info->io.addr_data)
2766                         info->io.regspacing =
2767                                 res_second->start - info->io.addr_data;
2768         }
2769         info->io.regsize = DEFAULT_REGSPACING;
2770         info->io.regshift = 0;
2771 
2772         /* If _GPE exists, use it; otherwise use standard interrupts */
2773         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2774         if (ACPI_SUCCESS(status)) {
2775                 info->irq = tmp;
2776                 info->irq_setup = acpi_gpe_irq_setup;
2777         } else {
2778                 int irq = platform_get_irq(dev, 0);
2779 
2780                 if (irq > 0) {
2781                         info->irq = irq;
2782                         info->irq_setup = std_irq_setup;
2783                 }
2784         }
2785 
2786         info->dev = &dev->dev;
2787         platform_set_drvdata(dev, info);
2788 
2789         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2790                  res, info->io.regsize, info->io.regspacing,
2791                  info->irq);
2792 
2793         rv = add_smi(info);
2794         if (rv)
2795                 kfree(info);
2796 
2797         return rv;
2798 
2799 err_free:
2800         kfree(info);
2801         return rv;
2802 }
2803 
2804 static const struct acpi_device_id acpi_ipmi_match[] = {
2805         { "IPI0001", 0 },
2806         { },
2807 };
2808 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2809 #else
2810 static int acpi_ipmi_probe(struct platform_device *dev)
2811 {
2812         return -ENODEV;
2813 }
2814 #endif
2815 
2816 static int ipmi_probe(struct platform_device *dev)
2817 {
2818         if (of_ipmi_probe(dev) == 0)
2819                 return 0;
2820 
2821         return acpi_ipmi_probe(dev);
2822 }
2823 
2824 static int ipmi_remove(struct platform_device *dev)
2825 {
2826         struct smi_info *info = dev_get_drvdata(&dev->dev);
2827 
2828         cleanup_one_si(info);
2829         return 0;
2830 }
2831 
2832 static struct platform_driver ipmi_driver = {
2833         .driver = {
2834                 .name = DEVICE_NAME,
2835                 .of_match_table = of_ipmi_match,
2836                 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2837         },
2838         .probe          = ipmi_probe,
2839         .remove         = ipmi_remove,
2840 };
2841 
2842 #ifdef CONFIG_PARISC
2843 static int ipmi_parisc_probe(struct parisc_device *dev)
2844 {
2845         struct smi_info *info;
2846         int rv;
2847 
2848         info = smi_info_alloc();
2849 
2850         if (!info) {
2851                 dev_err(&dev->dev,
2852                         "could not allocate memory for PARISC probe\n");
2853                 return -ENOMEM;
2854         }
2855 
2856         info->si_type           = SI_KCS;
2857         info->addr_source       = SI_DEVICETREE;
2858         info->io_setup          = mem_setup;
2859         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2860         info->io.addr_data      = dev->hpa.start;
2861         info->io.regsize        = 1;
2862         info->io.regspacing     = 1;
2863         info->io.regshift       = 0;
2864         info->irq               = 0; /* no interrupt */
2865         info->irq_setup         = NULL;
2866         info->dev               = &dev->dev;
2867 
2868         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2869 
2870         dev_set_drvdata(&dev->dev, info);
2871 
2872         rv = add_smi(info);
2873         if (rv) {
2874                 kfree(info);
2875                 return rv;
2876         }
2877 
2878         return 0;
2879 }
2880 
2881 static int ipmi_parisc_remove(struct parisc_device *dev)
2882 {
2883         cleanup_one_si(dev_get_drvdata(&dev->dev));
2884         return 0;
2885 }
2886 
2887 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2888         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2889         { 0, }
2890 };
2891 
2892 static struct parisc_driver ipmi_parisc_driver = {
2893         .name =         "ipmi",
2894         .id_table =     ipmi_parisc_tbl,
2895         .probe =        ipmi_parisc_probe,
2896         .remove =       ipmi_parisc_remove,
2897 };
2898 #endif /* CONFIG_PARISC */
2899 
2900 static int wait_for_msg_done(struct smi_info *smi_info)
2901 {
2902         enum si_sm_result     smi_result;
2903 
2904         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2905         for (;;) {
2906                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2907                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2908                         schedule_timeout_uninterruptible(1);
2909                         smi_result = smi_info->handlers->event(
2910                                 smi_info->si_sm, jiffies_to_usecs(1));
2911                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2912                         smi_result = smi_info->handlers->event(
2913                                 smi_info->si_sm, 0);
2914                 } else
2915                         break;
2916         }
2917         if (smi_result == SI_SM_HOSED)
2918                 /*
2919                  * We couldn't get the state machine to run, so whatever's at
2920                  * the port is probably not an IPMI SMI interface.
2921                  */
2922                 return -ENODEV;
2923 
2924         return 0;
2925 }
2926 
2927 static int try_get_dev_id(struct smi_info *smi_info)
2928 {
2929         unsigned char         msg[2];
2930         unsigned char         *resp;
2931         unsigned long         resp_len;
2932         int                   rv = 0;
2933 
2934         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2935         if (!resp)
2936                 return -ENOMEM;
2937 
2938         /*
2939          * Do a Get Device ID command, since it comes back with some
2940          * useful info.
2941          */
2942         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2943         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2944         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2945 
2946         rv = wait_for_msg_done(smi_info);
2947         if (rv)
2948                 goto out;
2949 
2950         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2951                                                   resp, IPMI_MAX_MSG_LENGTH);
2952 
2953         /* Check and record info from the get device id, in case we need it. */
2954         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2955 
2956 out:
2957         kfree(resp);
2958         return rv;
2959 }
2960 
2961 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2962 {
2963         unsigned char         msg[3];
2964         unsigned char         *resp;
2965         unsigned long         resp_len;
2966         int                   rv;
2967 
2968         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2969         if (!resp)
2970                 return -ENOMEM;
2971 
2972         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2973         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2974         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2975 
2976         rv = wait_for_msg_done(smi_info);
2977         if (rv) {
2978                 dev_warn(smi_info->dev,
2979                          "Error getting response from get global enables command: %d\n",
2980                          rv);
2981                 goto out;
2982         }
2983 
2984         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2985                                                   resp, IPMI_MAX_MSG_LENGTH);
2986 
2987         if (resp_len < 4 ||
2988                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2989                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2990                         resp[2] != 0) {
2991                 dev_warn(smi_info->dev,
2992                          "Invalid return from get global enables command: %ld %x %x %x\n",
2993                          resp_len, resp[0], resp[1], resp[2]);
2994                 rv = -EINVAL;
2995                 goto out;
2996         } else {
2997                 *enables = resp[3];
2998         }
2999 
3000 out:
3001         kfree(resp);
3002         return rv;
3003 }
3004 
3005 /*
3006  * Returns 1 if it gets an error from the command.
3007  */
3008 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3009 {
3010         unsigned char         msg[3];
3011         unsigned char         *resp;
3012         unsigned long         resp_len;
3013         int                   rv;
3014 
3015         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3016         if (!resp)
3017                 return -ENOMEM;
3018 
3019         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3020         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3021         msg[2] = enables;
3022         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3023 
3024         rv = wait_for_msg_done(smi_info);
3025         if (rv) {
3026                 dev_warn(smi_info->dev,
3027                          "Error getting response from set global enables command: %d\n",
3028                          rv);
3029                 goto out;
3030         }
3031 
3032         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3033                                                   resp, IPMI_MAX_MSG_LENGTH);
3034 
3035         if (resp_len < 3 ||
3036                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3037                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3038                 dev_warn(smi_info->dev,
3039                          "Invalid return from set global enables command: %ld %x %x\n",
3040                          resp_len, resp[0], resp[1]);
3041                 rv = -EINVAL;
3042                 goto out;
3043         }
3044 
3045         if (resp[2] != 0)
3046                 rv = 1;
3047 
3048 out:
3049         kfree(resp);
3050         return rv;
3051 }
3052 
3053 /*
3054  * Some BMCs do not support clearing the receive irq bit in the global
3055  * enables (even if they don't support interrupts on the BMC).  Check
3056  * for this and handle it properly.
3057  */
3058 static void check_clr_rcv_irq(struct smi_info *smi_info)
3059 {
3060         u8 enables = 0;
3061         int rv;
3062 
3063         rv = get_global_enables(smi_info, &enables);
3064         if (!rv) {
3065                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3066                         /* Already clear, should work ok. */
3067                         return;
3068 
3069                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3070                 rv = set_global_enables(smi_info, enables);
3071         }
3072 
3073         if (rv < 0) {
3074                 dev_err(smi_info->dev,
3075                         "Cannot check clearing the rcv irq: %d\n", rv);
3076                 return;
3077         }
3078 
3079         if (rv) {
3080                 /*
3081                  * An error when setting the event buffer bit means
3082                  * clearing the bit is not supported.
3083                  */
3084                 dev_warn(smi_info->dev,
3085                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086                 smi_info->cannot_disable_irq = true;
3087         }
3088 }
3089 
3090 /*
3091  * Some BMCs do not support setting the interrupt bits in the global
3092  * enables even if they support interrupts.  Clearly bad, but we can
3093  * compensate.
3094  */
3095 static void check_set_rcv_irq(struct smi_info *smi_info)
3096 {
3097         u8 enables = 0;
3098         int rv;
3099 
3100         if (!smi_info->irq)
3101                 return;
3102 
3103         rv = get_global_enables(smi_info, &enables);
3104         if (!rv) {
3105                 enables |= IPMI_BMC_RCV_MSG_INTR;
3106                 rv = set_global_enables(smi_info, enables);
3107         }
3108 
3109         if (rv < 0) {
3110                 dev_err(smi_info->dev,
3111                         "Cannot check setting the rcv irq: %d\n", rv);
3112                 return;
3113         }
3114 
3115         if (rv) {
3116                 /*
3117                  * An error when setting the event buffer bit means
3118                  * setting the bit is not supported.
3119                  */
3120                 dev_warn(smi_info->dev,
3121                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3122                 smi_info->cannot_disable_irq = true;
3123                 smi_info->irq_enable_broken = true;
3124         }
3125 }
3126 
3127 static int try_enable_event_buffer(struct smi_info *smi_info)
3128 {
3129         unsigned char         msg[3];
3130         unsigned char         *resp;
3131         unsigned long         resp_len;
3132         int                   rv = 0;
3133 
3134         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3135         if (!resp)
3136                 return -ENOMEM;
3137 
3138         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3139         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3140         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3141 
3142         rv = wait_for_msg_done(smi_info);
3143         if (rv) {
3144                 printk(KERN_WARNING PFX "Error getting response from get"
3145                        " global enables command, the event buffer is not"
3146                        " enabled.\n");
3147                 goto out;
3148         }
3149 
3150         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3151                                                   resp, IPMI_MAX_MSG_LENGTH);
3152 
3153         if (resp_len < 4 ||
3154                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3155                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3156                         resp[2] != 0) {
3157                 printk(KERN_WARNING PFX "Invalid return from get global"
3158                        " enables command, cannot enable the event buffer.\n");
3159                 rv = -EINVAL;
3160                 goto out;
3161         }
3162 
3163         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3164                 /* buffer is already enabled, nothing to do. */
3165                 smi_info->supports_event_msg_buff = true;
3166                 goto out;
3167         }
3168 
3169         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3170         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3171         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3172         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3173 
3174         rv = wait_for_msg_done(smi_info);
3175         if (rv) {
3176                 printk(KERN_WARNING PFX "Error getting response from set"
3177                        " global, enables command, the event buffer is not"
3178                        " enabled.\n");
3179                 goto out;
3180         }
3181 
3182         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3183                                                   resp, IPMI_MAX_MSG_LENGTH);
3184 
3185         if (resp_len < 3 ||
3186                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3187                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3188                 printk(KERN_WARNING PFX "Invalid return from get global,"
3189                        "enables command, not enable the event buffer.\n");
3190                 rv = -EINVAL;
3191                 goto out;
3192         }
3193 
3194         if (resp[2] != 0)
3195                 /*
3196                  * An error when setting the event buffer bit means
3197                  * that the event buffer is not supported.
3198                  */
3199                 rv = -ENOENT;
3200         else
3201                 smi_info->supports_event_msg_buff = true;
3202 
3203 out:
3204         kfree(resp);
3205         return rv;
3206 }
3207 
3208 static int smi_type_proc_show(struct seq_file *m, void *v)
3209 {
3210         struct smi_info *smi = m->private;
3211 
3212         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3213 
3214         return 0;
3215 }
3216 
3217 static int smi_type_proc_open(struct inode *inode, struct file *file)
3218 {
3219         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3220 }
3221 
3222 static const struct file_operations smi_type_proc_ops = {
3223         .open           = smi_type_proc_open,
3224         .read           = seq_read,
3225         .llseek         = seq_lseek,
3226         .release        = single_release,
3227 };
3228 
3229 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3230 {
3231         struct smi_info *smi = m->private;
3232 
3233         seq_printf(m, "interrupts_enabled:    %d\n",
3234                        smi->irq && !smi->interrupt_disabled);
3235         seq_printf(m, "short_timeouts:        %u\n",
3236                        smi_get_stat(smi, short_timeouts));
3237         seq_printf(m, "long_timeouts:         %u\n",
3238                        smi_get_stat(smi, long_timeouts));
3239         seq_printf(m, "idles:                 %u\n",
3240                        smi_get_stat(smi, idles));
3241         seq_printf(m, "interrupts:            %u\n",
3242                        smi_get_stat(smi, interrupts));
3243         seq_printf(m, "attentions:            %u\n",
3244                        smi_get_stat(smi, attentions));
3245         seq_printf(m, "flag_fetches:          %u\n",
3246                        smi_get_stat(smi, flag_fetches));
3247         seq_printf(m, "hosed_count:           %u\n",
3248                        smi_get_stat(smi, hosed_count));
3249         seq_printf(m, "complete_transactions: %u\n",
3250                        smi_get_stat(smi, complete_transactions));
3251         seq_printf(m, "events:                %u\n",
3252                        smi_get_stat(smi, events));
3253         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3254                        smi_get_stat(smi, watchdog_pretimeouts));
3255         seq_printf(m, "incoming_messages:     %u\n",
3256                        smi_get_stat(smi, incoming_messages));
3257         return 0;
3258 }
3259 
3260 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3261 {
3262         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3263 }
3264 
3265 static const struct file_operations smi_si_stats_proc_ops = {
3266         .open           = smi_si_stats_proc_open,
3267         .read           = seq_read,
3268         .llseek         = seq_lseek,
3269         .release        = single_release,
3270 };
3271 
3272 static int smi_params_proc_show(struct seq_file *m, void *v)
3273 {
3274         struct smi_info *smi = m->private;
3275 
3276         seq_printf(m,
3277                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3278                    si_to_str[smi->si_type],
3279                    addr_space_to_str[smi->io.addr_type],
3280                    smi->io.addr_data,
3281                    smi->io.regspacing,
3282                    smi->io.regsize,
3283                    smi->io.regshift,
3284                    smi->irq,
3285                    smi->slave_addr);
3286 
3287         return 0;
3288 }
3289 
3290 static int smi_params_proc_open(struct inode *inode, struct file *file)
3291 {
3292         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3293 }
3294 
3295 static const struct file_operations smi_params_proc_ops = {
3296         .open           = smi_params_proc_open,
3297         .read           = seq_read,
3298         .llseek         = seq_lseek,
3299         .release        = single_release,
3300 };
3301 
3302 /*
3303  * oem_data_avail_to_receive_msg_avail
3304  * @info - smi_info structure with msg_flags set
3305  *
3306  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3307  * Returns 1 indicating need to re-run handle_flags().
3308  */
3309 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3310 {
3311         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3312                                RECEIVE_MSG_AVAIL);
3313         return 1;
3314 }
3315 
3316 /*
3317  * setup_dell_poweredge_oem_data_handler
3318  * @info - smi_info.device_id must be populated
3319  *
3320  * Systems that match, but have firmware version < 1.40 may assert
3321  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3322  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3323  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3324  * as RECEIVE_MSG_AVAIL instead.
3325  *
3326  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3327  * assert the OEM[012] bits, and if it did, the driver would have to
3328  * change to handle that properly, we don't actually check for the
3329  * firmware version.
3330  * Device ID = 0x20                BMC on PowerEdge 8G servers
3331  * Device Revision = 0x80
3332  * Firmware Revision1 = 0x01       BMC version 1.40
3333  * Firmware Revision2 = 0x40       BCD encoded
3334  * IPMI Version = 0x51             IPMI 1.5
3335  * Manufacturer ID = A2 02 00      Dell IANA
3336  *
3337  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3338  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3339  *
3340  */
3341 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3342 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3343 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3344 #define DELL_IANA_MFR_ID 0x0002a2
3345 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3346 {
3347         struct ipmi_device_id *id = &smi_info->device_id;
3348         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3349                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3350                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3351                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3352                         smi_info->oem_data_avail_handler =
3353                                 oem_data_avail_to_receive_msg_avail;
3354                 } else if (ipmi_version_major(id) < 1 ||
3355                            (ipmi_version_major(id) == 1 &&
3356                             ipmi_version_minor(id) < 5)) {
3357                         smi_info->oem_data_avail_handler =
3358                                 oem_data_avail_to_receive_msg_avail;
3359                 }
3360         }
3361 }
3362 
3363 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3364 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3365 {
3366         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3367 
3368         /* Make it a response */
3369         msg->rsp[0] = msg->data[0] | 4;
3370         msg->rsp[1] = msg->data[1];
3371         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3372         msg->rsp_size = 3;
3373         smi_info->curr_msg = NULL;
3374         deliver_recv_msg(smi_info, msg);
3375 }
3376 
3377 /*
3378  * dell_poweredge_bt_xaction_handler
3379  * @info - smi_info.device_id must be populated
3380  *
3381  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3382  * not respond to a Get SDR command if the length of the data
3383  * requested is exactly 0x3A, which leads to command timeouts and no
3384  * data returned.  This intercepts such commands, and causes userspace
3385  * callers to try again with a different-sized buffer, which succeeds.
3386  */
3387 
3388 #define STORAGE_NETFN 0x0A
3389 #define STORAGE_CMD_GET_SDR 0x23
3390 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3391                                              unsigned long unused,
3392                                              void *in)
3393 {
3394         struct smi_info *smi_info = in;
3395         unsigned char *data = smi_info->curr_msg->data;
3396         unsigned int size   = smi_info->curr_msg->data_size;
3397         if (size >= 8 &&
3398             (data[0]>>2) == STORAGE_NETFN &&
3399             data[1] == STORAGE_CMD_GET_SDR &&
3400             data[7] == 0x3A) {
3401                 return_hosed_msg_badsize(smi_info);
3402                 return NOTIFY_STOP;
3403         }
3404         return NOTIFY_DONE;
3405 }
3406 
3407 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3408         .notifier_call  = dell_poweredge_bt_xaction_handler,
3409 };
3410 
3411 /*
3412  * setup_dell_poweredge_bt_xaction_handler
3413  * @info - smi_info.device_id must be filled in already
3414  *
3415  * Fills in smi_info.device_id.start_transaction_pre_hook
3416  * when we know what function to use there.
3417  */
3418 static void
3419 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3420 {
3421         struct ipmi_device_id *id = &smi_info->device_id;
3422         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3423             smi_info->si_type == SI_BT)
3424                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3425 }
3426 
3427 /*
3428  * setup_oem_data_handler
3429  * @info - smi_info.device_id must be filled in already
3430  *
3431  * Fills in smi_info.device_id.oem_data_available_handler
3432  * when we know what function to use there.
3433  */
3434 
3435 static void setup_oem_data_handler(struct smi_info *smi_info)
3436 {
3437         setup_dell_poweredge_oem_data_handler(smi_info);
3438 }
3439 
3440 static void setup_xaction_handlers(struct smi_info *smi_info)
3441 {
3442         setup_dell_poweredge_bt_xaction_handler(smi_info);
3443 }
3444 
3445 static void check_for_broken_irqs(struct smi_info *smi_info)
3446 {
3447         check_clr_rcv_irq(smi_info);
3448         check_set_rcv_irq(smi_info);
3449 }
3450 
3451 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3452 {
3453         if (smi_info->thread != NULL)
3454                 kthread_stop(smi_info->thread);
3455         if (smi_info->timer_running)
3456                 del_timer_sync(&smi_info->si_timer);
3457 }
3458 
3459 static int is_new_interface(struct smi_info *info)
3460 {
3461         struct smi_info *e;
3462 
3463         list_for_each_entry(e, &smi_infos, link) {
3464                 if (e->io.addr_type != info->io.addr_type)
3465                         continue;
3466                 if (e->io.addr_data == info->io.addr_data)
3467                         return 0;
3468         }
3469 
3470         return 1;
3471 }
3472 
3473 static int add_smi(struct smi_info *new_smi)
3474 {
3475         int rv = 0;
3476 
3477         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3478                ipmi_addr_src_to_str(new_smi->addr_source),
3479                si_to_str[new_smi->si_type]);
3480         mutex_lock(&smi_infos_lock);
3481         if (!is_new_interface(new_smi)) {
3482                 printk(KERN_CONT " duplicate interface\n");
3483                 rv = -EBUSY;
3484                 goto out_err;
3485         }
3486 
3487         printk(KERN_CONT "\n");
3488 
3489         /* So we know not to free it unless we have allocated one. */
3490         new_smi->intf = NULL;
3491         new_smi->si_sm = NULL;
3492         new_smi->handlers = NULL;
3493 
3494         list_add_tail(&new_smi->link, &smi_infos);
3495 
3496 out_err:
3497         mutex_unlock(&smi_infos_lock);
3498         return rv;
3499 }
3500 
3501 static int try_smi_init(struct smi_info *new_smi)
3502 {
3503         int rv = 0;
3504         int i;
3505 
3506         printk(KERN_INFO PFX "Trying %s-specified %s state"
3507                " machine at %s address 0x%lx, slave address 0x%x,"
3508                " irq %d\n",
3509                ipmi_addr_src_to_str(new_smi->addr_source),
3510                si_to_str[new_smi->si_type],
3511                addr_space_to_str[new_smi->io.addr_type],
3512                new_smi->io.addr_data,
3513                new_smi->slave_addr, new_smi->irq);
3514 
3515         switch (new_smi->si_type) {
3516         case SI_KCS:
3517                 new_smi->handlers = &kcs_smi_handlers;
3518                 break;
3519 
3520         case SI_SMIC:
3521                 new_smi->handlers = &smic_smi_handlers;
3522                 break;
3523 
3524         case SI_BT:
3525                 new_smi->handlers = &bt_smi_handlers;
3526                 break;
3527 
3528         default:
3529                 /* No support for anything else yet. */
3530                 rv = -EIO;
3531                 goto out_err;
3532         }
3533 
3534         /* Allocate the state machine's data and initialize it. */
3535         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3536         if (!new_smi->si_sm) {
3537                 printk(KERN_ERR PFX
3538                        "Could not allocate state machine memory\n");
3539                 rv = -ENOMEM;
3540                 goto out_err;
3541         }
3542         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3543                                                         &new_smi->io);
3544 
3545         /* Now that we know the I/O size, we can set up the I/O. */
3546         rv = new_smi->io_setup(new_smi);
3547         if (rv) {
3548                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3549                 goto out_err;
3550         }
3551 
3552         /* Do low-level detection first. */
3553         if (new_smi->handlers->detect(new_smi->si_sm)) {
3554                 if (new_smi->addr_source)
3555                         printk(KERN_INFO PFX "Interface detection failed\n");
3556                 rv = -ENODEV;
3557                 goto out_err;
3558         }
3559 
3560         /*
3561          * Attempt a get device id command.  If it fails, we probably
3562          * don't have a BMC here.
3563          */
3564         rv = try_get_dev_id(new_smi);
3565         if (rv) {
3566                 if (new_smi->addr_source)
3567                         printk(KERN_INFO PFX "There appears to be no BMC"
3568                                " at this location\n");
3569                 goto out_err;
3570         }
3571 
3572         setup_oem_data_handler(new_smi);
3573         setup_xaction_handlers(new_smi);
3574         check_for_broken_irqs(new_smi);
3575 
3576         new_smi->waiting_msg = NULL;
3577         new_smi->curr_msg = NULL;
3578         atomic_set(&new_smi->req_events, 0);
3579         new_smi->run_to_completion = false;
3580         for (i = 0; i < SI_NUM_STATS; i++)
3581                 atomic_set(&new_smi->stats[i], 0);
3582 
3583         new_smi->interrupt_disabled = true;
3584         atomic_set(&new_smi->need_watch, 0);
3585         new_smi->intf_num = smi_num;
3586         smi_num++;
3587 
3588         rv = try_enable_event_buffer(new_smi);
3589         if (rv == 0)
3590                 new_smi->has_event_buffer = true;
3591 
3592         /*
3593          * Start clearing the flags before we enable interrupts or the
3594          * timer to avoid racing with the timer.
3595          */
3596         start_clear_flags(new_smi, false);
3597 
3598         /*
3599          * IRQ is defined to be set when non-zero.  req_events will
3600          * cause a global flags check that will enable interrupts.
3601          */
3602         if (new_smi->irq) {
3603                 new_smi->interrupt_disabled = false;
3604                 atomic_set(&new_smi->req_events, 1);
3605         }
3606 
3607         if (!new_smi->dev) {
3608                 /*
3609                  * If we don't already have a device from something
3610                  * else (like PCI), then register a new one.
3611                  */
3612                 new_smi->pdev = platform_device_alloc("ipmi_si",
3613                                                       new_smi->intf_num);
3614                 if (!new_smi->pdev) {
3615                         printk(KERN_ERR PFX
3616                                "Unable to allocate platform device\n");
3617                         goto out_err;
3618                 }
3619                 new_smi->dev = &new_smi->pdev->dev;
3620                 new_smi->dev->driver = &ipmi_driver.driver;
3621 
3622                 rv = platform_device_add(new_smi->pdev);
3623                 if (rv) {
3624                         printk(KERN_ERR PFX
3625                                "Unable to register system interface device:"
3626                                " %d\n",
3627                                rv);
3628                         goto out_err;
3629                 }
3630                 new_smi->dev_registered = true;
3631         }
3632 
3633         rv = ipmi_register_smi(&handlers,
3634                                new_smi,
3635                                &new_smi->device_id,
3636                                new_smi->dev,
3637                                new_smi->slave_addr);
3638         if (rv) {
3639                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3640                         rv);
3641                 goto out_err_stop_timer;
3642         }
3643 
3644         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3645                                      &smi_type_proc_ops,
3646                                      new_smi);
3647         if (rv) {
3648                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3649                 goto out_err_stop_timer;
3650         }
3651 
3652         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3653                                      &smi_si_stats_proc_ops,
3654                                      new_smi);
3655         if (rv) {
3656                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3657                 goto out_err_stop_timer;
3658         }
3659 
3660         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3661                                      &smi_params_proc_ops,
3662                                      new_smi);
3663         if (rv) {
3664                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3665                 goto out_err_stop_timer;
3666         }
3667 
3668         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3669                  si_to_str[new_smi->si_type]);
3670 
3671         return 0;
3672 
3673 out_err_stop_timer:
3674         wait_for_timer_and_thread(new_smi);
3675 
3676 out_err:
3677         new_smi->interrupt_disabled = true;
3678 
3679         if (new_smi->intf) {
3680                 ipmi_smi_t intf = new_smi->intf;
3681                 new_smi->intf = NULL;
3682                 ipmi_unregister_smi(intf);
3683         }
3684 
3685         if (new_smi->irq_cleanup) {
3686                 new_smi->irq_cleanup(new_smi);
3687                 new_smi->irq_cleanup = NULL;
3688         }
3689 
3690         /*
3691          * Wait until we know that we are out of any interrupt
3692          * handlers might have been running before we freed the
3693          * interrupt.
3694          */
3695         synchronize_sched();
3696 
3697         if (new_smi->si_sm) {
3698                 if (new_smi->handlers)
3699                         new_smi->handlers->cleanup(new_smi->si_sm);
3700                 kfree(new_smi->si_sm);
3701                 new_smi->si_sm = NULL;
3702         }
3703         if (new_smi->addr_source_cleanup) {
3704                 new_smi->addr_source_cleanup(new_smi);
3705                 new_smi->addr_source_cleanup = NULL;
3706         }
3707         if (new_smi->io_cleanup) {
3708                 new_smi->io_cleanup(new_smi);
3709                 new_smi->io_cleanup = NULL;
3710         }
3711 
3712         if (new_smi->dev_registered) {
3713                 platform_device_unregister(new_smi->pdev);
3714                 new_smi->dev_registered = false;
3715         }
3716 
3717         return rv;
3718 }
3719 
3720 static int init_ipmi_si(void)
3721 {
3722         int  i;
3723         char *str;
3724         int  rv;
3725         struct smi_info *e;
3726         enum ipmi_addr_src type = SI_INVALID;
3727 
3728         if (initialized)
3729                 return 0;
3730         initialized = 1;
3731 
3732         if (si_tryplatform) {
3733                 rv = platform_driver_register(&ipmi_driver);
3734                 if (rv) {
3735                         printk(KERN_ERR PFX "Unable to register "
3736                                "driver: %d\n", rv);
3737                         return rv;
3738                 }
3739         }
3740 
3741         /* Parse out the si_type string into its components. */
3742         str = si_type_str;
3743         if (*str != '\0') {
3744                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3745                         si_type[i] = str;
3746                         str = strchr(str, ',');
3747                         if (str) {
3748                                 *str = '\0';
3749                                 str++;
3750                         } else {
3751                                 break;
3752                         }
3753                 }
3754         }
3755 
3756         printk(KERN_INFO "IPMI System Interface driver.\n");
3757 
3758         /* If the user gave us a device, they presumably want us to use it */
3759         if (!hardcode_find_bmc())
3760                 return 0;
3761 
3762 #ifdef CONFIG_PCI
3763         if (si_trypci) {
3764                 rv = pci_register_driver(&ipmi_pci_driver);
3765                 if (rv)
3766                         printk(KERN_ERR PFX "Unable to register "
3767                                "PCI driver: %d\n", rv);
3768                 else
3769                         pci_registered = true;
3770         }
3771 #endif
3772 
3773 #ifdef CONFIG_DMI
3774         if (si_trydmi)
3775                 dmi_find_bmc();
3776 #endif
3777 
3778 #ifdef CONFIG_ACPI
3779         if (si_tryacpi)
3780                 spmi_find_bmc();
3781 #endif
3782 
3783 #ifdef CONFIG_PARISC
3784         register_parisc_driver(&ipmi_parisc_driver);
3785         parisc_registered = true;
3786 #endif
3787 
3788         /* We prefer devices with interrupts, but in the case of a machine
3789            with multiple BMCs we assume that there will be several instances
3790            of a given type so if we succeed in registering a type then also
3791            try to register everything else of the same type */
3792 
3793         mutex_lock(&smi_infos_lock);
3794         list_for_each_entry(e, &smi_infos, link) {
3795                 /* Try to register a device if it has an IRQ and we either
3796                    haven't successfully registered a device yet or this
3797                    device has the same type as one we successfully registered */
3798                 if (e->irq && (!type || e->addr_source == type)) {
3799                         if (!try_smi_init(e)) {
3800                                 type = e->addr_source;
3801                         }
3802                 }
3803         }
3804 
3805         /* type will only have been set if we successfully registered an si */
3806         if (type) {
3807                 mutex_unlock(&smi_infos_lock);
3808                 return 0;
3809         }
3810 
3811         /* Fall back to the preferred device */
3812 
3813         list_for_each_entry(e, &smi_infos, link) {
3814                 if (!e->irq && (!type || e->addr_source == type)) {
3815                         if (!try_smi_init(e)) {
3816                                 type = e->addr_source;
3817                         }
3818                 }
3819         }
3820         mutex_unlock(&smi_infos_lock);
3821 
3822         if (type)
3823                 return 0;
3824 
3825         mutex_lock(&smi_infos_lock);
3826         if (unload_when_empty && list_empty(&smi_infos)) {
3827                 mutex_unlock(&smi_infos_lock);
3828                 cleanup_ipmi_si();
3829                 printk(KERN_WARNING PFX
3830                        "Unable to find any System Interface(s)\n");
3831                 return -ENODEV;
3832         } else {
3833                 mutex_unlock(&smi_infos_lock);
3834                 return 0;
3835         }
3836 }
3837 module_init(init_ipmi_si);
3838 
3839 static void cleanup_one_si(struct smi_info *to_clean)
3840 {
3841         int           rv = 0;
3842 
3843         if (!to_clean)
3844                 return;
3845 
3846         if (to_clean->intf) {
3847                 ipmi_smi_t intf = to_clean->intf;
3848 
3849                 to_clean->intf = NULL;
3850                 rv = ipmi_unregister_smi(intf);
3851                 if (rv) {
3852                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3853                                rv);
3854                 }
3855         }
3856 
3857         if (to_clean->dev)
3858                 dev_set_drvdata(to_clean->dev, NULL);
3859 
3860         list_del(&to_clean->link);
3861 
3862         /*
3863          * Make sure that interrupts, the timer and the thread are
3864          * stopped and will not run again.
3865          */
3866         if (to_clean->irq_cleanup)
3867                 to_clean->irq_cleanup(to_clean);
3868         wait_for_timer_and_thread(to_clean);
3869 
3870         /*
3871          * Timeouts are stopped, now make sure the interrupts are off
3872          * in the BMC.  Note that timers and CPU interrupts are off,
3873          * so no need for locks.
3874          */
3875         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3876                 poll(to_clean);
3877                 schedule_timeout_uninterruptible(1);
3878         }
3879         disable_si_irq(to_clean, false);
3880         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3881                 poll(to_clean);
3882                 schedule_timeout_uninterruptible(1);
3883         }
3884 
3885         if (to_clean->handlers)
3886                 to_clean->handlers->cleanup(to_clean->si_sm);
3887 
3888         kfree(to_clean->si_sm);
3889 
3890         if (to_clean->addr_source_cleanup)
3891                 to_clean->addr_source_cleanup(to_clean);
3892         if (to_clean->io_cleanup)
3893                 to_clean->io_cleanup(to_clean);
3894 
3895         if (to_clean->dev_registered)
3896                 platform_device_unregister(to_clean->pdev);
3897 
3898         kfree(to_clean);
3899 }
3900 
3901 static void cleanup_ipmi_si(void)
3902 {
3903         struct smi_info *e, *tmp_e;
3904 
3905         if (!initialized)
3906                 return;
3907 
3908 #ifdef CONFIG_PCI
3909         if (pci_registered)
3910                 pci_unregister_driver(&ipmi_pci_driver);
3911 #endif
3912 #ifdef CONFIG_PARISC
3913         if (parisc_registered)
3914                 unregister_parisc_driver(&ipmi_parisc_driver);
3915 #endif
3916 
3917         platform_driver_unregister(&ipmi_driver);
3918 
3919         mutex_lock(&smi_infos_lock);
3920         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3921                 cleanup_one_si(e);
3922         mutex_unlock(&smi_infos_lock);
3923 }
3924 module_exit(cleanup_ipmi_si);
3925 
3926 MODULE_LICENSE("GPL");
3927 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3928 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3929                    " system interfaces.");
3930 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us