Version:  2.0.40 2.2.26 2.4.37 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7

Linux/drivers/char/ipmi/ipmi_msghandler.c

  1 /*
  2  * ipmi_msghandler.c
  3  *
  4  * Incoming and outgoing message routing for an IPMI interface.
  5  *
  6  * Author: MontaVista Software, Inc.
  7  *         Corey Minyard <minyard@mvista.com>
  8  *         source@mvista.com
  9  *
 10  * Copyright 2002 MontaVista Software Inc.
 11  *
 12  *  This program is free software; you can redistribute it and/or modify it
 13  *  under the terms of the GNU General Public License as published by the
 14  *  Free Software Foundation; either version 2 of the License, or (at your
 15  *  option) any later version.
 16  *
 17  *
 18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 28  *
 29  *  You should have received a copy of the GNU General Public License along
 30  *  with this program; if not, write to the Free Software Foundation, Inc.,
 31  *  675 Mass Ave, Cambridge, MA 02139, USA.
 32  */
 33 
 34 #include <linux/module.h>
 35 #include <linux/errno.h>
 36 #include <linux/poll.h>
 37 #include <linux/sched.h>
 38 #include <linux/seq_file.h>
 39 #include <linux/spinlock.h>
 40 #include <linux/mutex.h>
 41 #include <linux/slab.h>
 42 #include <linux/ipmi.h>
 43 #include <linux/ipmi_smi.h>
 44 #include <linux/notifier.h>
 45 #include <linux/init.h>
 46 #include <linux/proc_fs.h>
 47 #include <linux/rcupdate.h>
 48 #include <linux/interrupt.h>
 49 
 50 #define PFX "IPMI message handler: "
 51 
 52 #define IPMI_DRIVER_VERSION "39.2"
 53 
 54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
 55 static int ipmi_init_msghandler(void);
 56 static void smi_recv_tasklet(unsigned long);
 57 static void handle_new_recv_msgs(ipmi_smi_t intf);
 58 static void need_waiter(ipmi_smi_t intf);
 59 static int handle_one_recv_msg(ipmi_smi_t          intf,
 60                                struct ipmi_smi_msg *msg);
 61 
 62 static int initialized;
 63 
 64 #ifdef CONFIG_PROC_FS
 65 static struct proc_dir_entry *proc_ipmi_root;
 66 #endif /* CONFIG_PROC_FS */
 67 
 68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
 69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
 70 
 71 #define MAX_EVENTS_IN_QUEUE     25
 72 
 73 /*
 74  * Don't let a message sit in a queue forever, always time it with at lest
 75  * the max message timer.  This is in milliseconds.
 76  */
 77 #define MAX_MSG_TIMEOUT         60000
 78 
 79 /* Call every ~1000 ms. */
 80 #define IPMI_TIMEOUT_TIME       1000
 81 
 82 /* How many jiffies does it take to get to the timeout time. */
 83 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
 84 
 85 /*
 86  * Request events from the queue every second (this is the number of
 87  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
 88  * future, IPMI will add a way to know immediately if an event is in
 89  * the queue and this silliness can go away.
 90  */
 91 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
 92 
 93 /*
 94  * The main "user" data structure.
 95  */
 96 struct ipmi_user {
 97         struct list_head link;
 98 
 99         /* Set to false when the user is destroyed. */
100         bool valid;
101 
102         struct kref refcount;
103 
104         /* The upper layer that handles receive messages. */
105         struct ipmi_user_hndl *handler;
106         void             *handler_data;
107 
108         /* The interface this user is bound to. */
109         ipmi_smi_t intf;
110 
111         /* Does this interface receive IPMI events? */
112         bool gets_events;
113 };
114 
115 struct cmd_rcvr {
116         struct list_head link;
117 
118         ipmi_user_t   user;
119         unsigned char netfn;
120         unsigned char cmd;
121         unsigned int  chans;
122 
123         /*
124          * This is used to form a linked lised during mass deletion.
125          * Since this is in an RCU list, we cannot use the link above
126          * or change any data until the RCU period completes.  So we
127          * use this next variable during mass deletion so we can have
128          * a list and don't have to wait and restart the search on
129          * every individual deletion of a command.
130          */
131         struct cmd_rcvr *next;
132 };
133 
134 struct seq_table {
135         unsigned int         inuse : 1;
136         unsigned int         broadcast : 1;
137 
138         unsigned long        timeout;
139         unsigned long        orig_timeout;
140         unsigned int         retries_left;
141 
142         /*
143          * To verify on an incoming send message response that this is
144          * the message that the response is for, we keep a sequence id
145          * and increment it every time we send a message.
146          */
147         long                 seqid;
148 
149         /*
150          * This is held so we can properly respond to the message on a
151          * timeout, and it is used to hold the temporary data for
152          * retransmission, too.
153          */
154         struct ipmi_recv_msg *recv_msg;
155 };
156 
157 /*
158  * Store the information in a msgid (long) to allow us to find a
159  * sequence table entry from the msgid.
160  */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162 
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164         do {                                                            \
165                 seq = ((msgid >> 26) & 0x3f);                           \
166                 seqid = (msgid & 0x3fffff);                             \
167         } while (0)
168 
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170 
171 struct ipmi_channel {
172         unsigned char medium;
173         unsigned char protocol;
174 
175         /*
176          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
177          * but may be changed by the user.
178          */
179         unsigned char address;
180 
181         /*
182          * My LUN.  This should generally stay the SMS LUN, but just in
183          * case...
184          */
185         unsigned char lun;
186 };
187 
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry {
190         char                   *name;
191         struct ipmi_proc_entry *next;
192 };
193 #endif
194 
195 struct bmc_device {
196         struct platform_device pdev;
197         struct ipmi_device_id  id;
198         unsigned char          guid[16];
199         int                    guid_set;
200         char                   name[16];
201         struct kref            usecount;
202 };
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204 
205 /*
206  * Various statistics for IPMI, these index stats[] in the ipmi_smi
207  * structure.
208  */
209 enum ipmi_stat_indexes {
210         /* Commands we got from the user that were invalid. */
211         IPMI_STAT_sent_invalid_commands = 0,
212 
213         /* Commands we sent to the MC. */
214         IPMI_STAT_sent_local_commands,
215 
216         /* Responses from the MC that were delivered to a user. */
217         IPMI_STAT_handled_local_responses,
218 
219         /* Responses from the MC that were not delivered to a user. */
220         IPMI_STAT_unhandled_local_responses,
221 
222         /* Commands we sent out to the IPMB bus. */
223         IPMI_STAT_sent_ipmb_commands,
224 
225         /* Commands sent on the IPMB that had errors on the SEND CMD */
226         IPMI_STAT_sent_ipmb_command_errs,
227 
228         /* Each retransmit increments this count. */
229         IPMI_STAT_retransmitted_ipmb_commands,
230 
231         /*
232          * When a message times out (runs out of retransmits) this is
233          * incremented.
234          */
235         IPMI_STAT_timed_out_ipmb_commands,
236 
237         /*
238          * This is like above, but for broadcasts.  Broadcasts are
239          * *not* included in the above count (they are expected to
240          * time out).
241          */
242         IPMI_STAT_timed_out_ipmb_broadcasts,
243 
244         /* Responses I have sent to the IPMB bus. */
245         IPMI_STAT_sent_ipmb_responses,
246 
247         /* The response was delivered to the user. */
248         IPMI_STAT_handled_ipmb_responses,
249 
250         /* The response had invalid data in it. */
251         IPMI_STAT_invalid_ipmb_responses,
252 
253         /* The response didn't have anyone waiting for it. */
254         IPMI_STAT_unhandled_ipmb_responses,
255 
256         /* Commands we sent out to the IPMB bus. */
257         IPMI_STAT_sent_lan_commands,
258 
259         /* Commands sent on the IPMB that had errors on the SEND CMD */
260         IPMI_STAT_sent_lan_command_errs,
261 
262         /* Each retransmit increments this count. */
263         IPMI_STAT_retransmitted_lan_commands,
264 
265         /*
266          * When a message times out (runs out of retransmits) this is
267          * incremented.
268          */
269         IPMI_STAT_timed_out_lan_commands,
270 
271         /* Responses I have sent to the IPMB bus. */
272         IPMI_STAT_sent_lan_responses,
273 
274         /* The response was delivered to the user. */
275         IPMI_STAT_handled_lan_responses,
276 
277         /* The response had invalid data in it. */
278         IPMI_STAT_invalid_lan_responses,
279 
280         /* The response didn't have anyone waiting for it. */
281         IPMI_STAT_unhandled_lan_responses,
282 
283         /* The command was delivered to the user. */
284         IPMI_STAT_handled_commands,
285 
286         /* The command had invalid data in it. */
287         IPMI_STAT_invalid_commands,
288 
289         /* The command didn't have anyone waiting for it. */
290         IPMI_STAT_unhandled_commands,
291 
292         /* Invalid data in an event. */
293         IPMI_STAT_invalid_events,
294 
295         /* Events that were received with the proper format. */
296         IPMI_STAT_events,
297 
298         /* Retransmissions on IPMB that failed. */
299         IPMI_STAT_dropped_rexmit_ipmb_commands,
300 
301         /* Retransmissions on LAN that failed. */
302         IPMI_STAT_dropped_rexmit_lan_commands,
303 
304         /* This *must* remain last, add new values above this. */
305         IPMI_NUM_STATS
306 };
307 
308 
309 #define IPMI_IPMB_NUM_SEQ       64
310 #define IPMI_MAX_CHANNELS       16
311 struct ipmi_smi {
312         /* What interface number are we? */
313         int intf_num;
314 
315         struct kref refcount;
316 
317         /* Set when the interface is being unregistered. */
318         bool in_shutdown;
319 
320         /* Used for a list of interfaces. */
321         struct list_head link;
322 
323         /*
324          * The list of upper layers that are using me.  seq_lock
325          * protects this.
326          */
327         struct list_head users;
328 
329         /* Information to supply to users. */
330         unsigned char ipmi_version_major;
331         unsigned char ipmi_version_minor;
332 
333         /* Used for wake ups at startup. */
334         wait_queue_head_t waitq;
335 
336         struct bmc_device *bmc;
337         char *my_dev_name;
338 
339         /*
340          * This is the lower-layer's sender routine.  Note that you
341          * must either be holding the ipmi_interfaces_mutex or be in
342          * an umpreemptible region to use this.  You must fetch the
343          * value into a local variable and make sure it is not NULL.
344          */
345         const struct ipmi_smi_handlers *handlers;
346         void                     *send_info;
347 
348 #ifdef CONFIG_PROC_FS
349         /* A list of proc entries for this interface. */
350         struct mutex           proc_entry_lock;
351         struct ipmi_proc_entry *proc_entries;
352 #endif
353 
354         /* Driver-model device for the system interface. */
355         struct device          *si_dev;
356 
357         /*
358          * A table of sequence numbers for this interface.  We use the
359          * sequence numbers for IPMB messages that go out of the
360          * interface to match them up with their responses.  A routine
361          * is called periodically to time the items in this list.
362          */
363         spinlock_t       seq_lock;
364         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365         int curr_seq;
366 
367         /*
368          * Messages queued for delivery.  If delivery fails (out of memory
369          * for instance), They will stay in here to be processed later in a
370          * periodic timer interrupt.  The tasklet is for handling received
371          * messages directly from the handler.
372          */
373         spinlock_t       waiting_rcv_msgs_lock;
374         struct list_head waiting_rcv_msgs;
375         atomic_t         watchdog_pretimeouts_to_deliver;
376         struct tasklet_struct recv_tasklet;
377 
378         spinlock_t             xmit_msgs_lock;
379         struct list_head       xmit_msgs;
380         struct ipmi_smi_msg    *curr_msg;
381         struct list_head       hp_xmit_msgs;
382 
383         /*
384          * The list of command receivers that are registered for commands
385          * on this interface.
386          */
387         struct mutex     cmd_rcvrs_mutex;
388         struct list_head cmd_rcvrs;
389 
390         /*
391          * Events that were queues because no one was there to receive
392          * them.
393          */
394         spinlock_t       events_lock; /* For dealing with event stuff. */
395         struct list_head waiting_events;
396         unsigned int     waiting_events_count; /* How many events in queue? */
397         char             delivering_events;
398         char             event_msg_printed;
399         atomic_t         event_waiters;
400         unsigned int     ticks_to_req_ev;
401         int              last_needs_timer;
402 
403         /*
404          * The event receiver for my BMC, only really used at panic
405          * shutdown as a place to store this.
406          */
407         unsigned char event_receiver;
408         unsigned char event_receiver_lun;
409         unsigned char local_sel_device;
410         unsigned char local_event_generator;
411 
412         /* For handling of maintenance mode. */
413         int maintenance_mode;
414         bool maintenance_mode_enable;
415         int auto_maintenance_timeout;
416         spinlock_t maintenance_mode_lock; /* Used in a timer... */
417 
418         /*
419          * A cheap hack, if this is non-null and a message to an
420          * interface comes in with a NULL user, call this routine with
421          * it.  Note that the message will still be freed by the
422          * caller.  This only works on the system interface.
423          */
424         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425 
426         /*
427          * When we are scanning the channels for an SMI, this will
428          * tell which channel we are scanning.
429          */
430         int curr_channel;
431 
432         /* Channel information */
433         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434 
435         /* Proc FS stuff. */
436         struct proc_dir_entry *proc_dir;
437         char                  proc_dir_name[10];
438 
439         atomic_t stats[IPMI_NUM_STATS];
440 
441         /*
442          * run_to_completion duplicate of smb_info, smi_info
443          * and ipmi_serial_info structures. Used to decrease numbers of
444          * parameters passed by "low" level IPMI code.
445          */
446         int run_to_completion;
447 };
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449 
450 /**
451  * The driver model view of the IPMI messaging driver.
452  */
453 static struct platform_driver ipmidriver = {
454         .driver = {
455                 .name = "ipmi",
456                 .bus = &platform_bus_type
457         }
458 };
459 static DEFINE_MUTEX(ipmidriver_mutex);
460 
461 static LIST_HEAD(ipmi_interfaces);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex);
463 
464 /*
465  * List of watchers that want to know when smi's are added and deleted.
466  */
467 static LIST_HEAD(smi_watchers);
468 static DEFINE_MUTEX(smi_watchers_mutex);
469 
470 #define ipmi_inc_stat(intf, stat) \
471         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474 
475 static const char * const addr_src_to_str[] = {
476         "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
477         "device-tree", "default"
478 };
479 
480 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
481 {
482         if (src > SI_DEFAULT)
483                 src = 0; /* Invalid */
484         return addr_src_to_str[src];
485 }
486 EXPORT_SYMBOL(ipmi_addr_src_to_str);
487 
488 static int is_lan_addr(struct ipmi_addr *addr)
489 {
490         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
491 }
492 
493 static int is_ipmb_addr(struct ipmi_addr *addr)
494 {
495         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
496 }
497 
498 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
499 {
500         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
501 }
502 
503 static void free_recv_msg_list(struct list_head *q)
504 {
505         struct ipmi_recv_msg *msg, *msg2;
506 
507         list_for_each_entry_safe(msg, msg2, q, link) {
508                 list_del(&msg->link);
509                 ipmi_free_recv_msg(msg);
510         }
511 }
512 
513 static void free_smi_msg_list(struct list_head *q)
514 {
515         struct ipmi_smi_msg *msg, *msg2;
516 
517         list_for_each_entry_safe(msg, msg2, q, link) {
518                 list_del(&msg->link);
519                 ipmi_free_smi_msg(msg);
520         }
521 }
522 
523 static void clean_up_interface_data(ipmi_smi_t intf)
524 {
525         int              i;
526         struct cmd_rcvr  *rcvr, *rcvr2;
527         struct list_head list;
528 
529         tasklet_kill(&intf->recv_tasklet);
530 
531         free_smi_msg_list(&intf->waiting_rcv_msgs);
532         free_recv_msg_list(&intf->waiting_events);
533 
534         /*
535          * Wholesale remove all the entries from the list in the
536          * interface and wait for RCU to know that none are in use.
537          */
538         mutex_lock(&intf->cmd_rcvrs_mutex);
539         INIT_LIST_HEAD(&list);
540         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
541         mutex_unlock(&intf->cmd_rcvrs_mutex);
542 
543         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
544                 kfree(rcvr);
545 
546         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
547                 if ((intf->seq_table[i].inuse)
548                                         && (intf->seq_table[i].recv_msg))
549                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
550         }
551 }
552 
553 static void intf_free(struct kref *ref)
554 {
555         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
556 
557         clean_up_interface_data(intf);
558         kfree(intf);
559 }
560 
561 struct watcher_entry {
562         int              intf_num;
563         ipmi_smi_t       intf;
564         struct list_head link;
565 };
566 
567 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
568 {
569         ipmi_smi_t intf;
570         LIST_HEAD(to_deliver);
571         struct watcher_entry *e, *e2;
572 
573         mutex_lock(&smi_watchers_mutex);
574 
575         mutex_lock(&ipmi_interfaces_mutex);
576 
577         /* Build a list of things to deliver. */
578         list_for_each_entry(intf, &ipmi_interfaces, link) {
579                 if (intf->intf_num == -1)
580                         continue;
581                 e = kmalloc(sizeof(*e), GFP_KERNEL);
582                 if (!e)
583                         goto out_err;
584                 kref_get(&intf->refcount);
585                 e->intf = intf;
586                 e->intf_num = intf->intf_num;
587                 list_add_tail(&e->link, &to_deliver);
588         }
589 
590         /* We will succeed, so add it to the list. */
591         list_add(&watcher->link, &smi_watchers);
592 
593         mutex_unlock(&ipmi_interfaces_mutex);
594 
595         list_for_each_entry_safe(e, e2, &to_deliver, link) {
596                 list_del(&e->link);
597                 watcher->new_smi(e->intf_num, e->intf->si_dev);
598                 kref_put(&e->intf->refcount, intf_free);
599                 kfree(e);
600         }
601 
602         mutex_unlock(&smi_watchers_mutex);
603 
604         return 0;
605 
606  out_err:
607         mutex_unlock(&ipmi_interfaces_mutex);
608         mutex_unlock(&smi_watchers_mutex);
609         list_for_each_entry_safe(e, e2, &to_deliver, link) {
610                 list_del(&e->link);
611                 kref_put(&e->intf->refcount, intf_free);
612                 kfree(e);
613         }
614         return -ENOMEM;
615 }
616 EXPORT_SYMBOL(ipmi_smi_watcher_register);
617 
618 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
619 {
620         mutex_lock(&smi_watchers_mutex);
621         list_del(&(watcher->link));
622         mutex_unlock(&smi_watchers_mutex);
623         return 0;
624 }
625 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
626 
627 /*
628  * Must be called with smi_watchers_mutex held.
629  */
630 static void
631 call_smi_watchers(int i, struct device *dev)
632 {
633         struct ipmi_smi_watcher *w;
634 
635         list_for_each_entry(w, &smi_watchers, link) {
636                 if (try_module_get(w->owner)) {
637                         w->new_smi(i, dev);
638                         module_put(w->owner);
639                 }
640         }
641 }
642 
643 static int
644 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
645 {
646         if (addr1->addr_type != addr2->addr_type)
647                 return 0;
648 
649         if (addr1->channel != addr2->channel)
650                 return 0;
651 
652         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
653                 struct ipmi_system_interface_addr *smi_addr1
654                     = (struct ipmi_system_interface_addr *) addr1;
655                 struct ipmi_system_interface_addr *smi_addr2
656                     = (struct ipmi_system_interface_addr *) addr2;
657                 return (smi_addr1->lun == smi_addr2->lun);
658         }
659 
660         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
661                 struct ipmi_ipmb_addr *ipmb_addr1
662                     = (struct ipmi_ipmb_addr *) addr1;
663                 struct ipmi_ipmb_addr *ipmb_addr2
664                     = (struct ipmi_ipmb_addr *) addr2;
665 
666                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
667                         && (ipmb_addr1->lun == ipmb_addr2->lun));
668         }
669 
670         if (is_lan_addr(addr1)) {
671                 struct ipmi_lan_addr *lan_addr1
672                         = (struct ipmi_lan_addr *) addr1;
673                 struct ipmi_lan_addr *lan_addr2
674                     = (struct ipmi_lan_addr *) addr2;
675 
676                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
677                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
678                         && (lan_addr1->session_handle
679                             == lan_addr2->session_handle)
680                         && (lan_addr1->lun == lan_addr2->lun));
681         }
682 
683         return 1;
684 }
685 
686 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
687 {
688         if (len < sizeof(struct ipmi_system_interface_addr))
689                 return -EINVAL;
690 
691         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
692                 if (addr->channel != IPMI_BMC_CHANNEL)
693                         return -EINVAL;
694                 return 0;
695         }
696 
697         if ((addr->channel == IPMI_BMC_CHANNEL)
698             || (addr->channel >= IPMI_MAX_CHANNELS)
699             || (addr->channel < 0))
700                 return -EINVAL;
701 
702         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
703                 if (len < sizeof(struct ipmi_ipmb_addr))
704                         return -EINVAL;
705                 return 0;
706         }
707 
708         if (is_lan_addr(addr)) {
709                 if (len < sizeof(struct ipmi_lan_addr))
710                         return -EINVAL;
711                 return 0;
712         }
713 
714         return -EINVAL;
715 }
716 EXPORT_SYMBOL(ipmi_validate_addr);
717 
718 unsigned int ipmi_addr_length(int addr_type)
719 {
720         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
721                 return sizeof(struct ipmi_system_interface_addr);
722 
723         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
724                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
725                 return sizeof(struct ipmi_ipmb_addr);
726 
727         if (addr_type == IPMI_LAN_ADDR_TYPE)
728                 return sizeof(struct ipmi_lan_addr);
729 
730         return 0;
731 }
732 EXPORT_SYMBOL(ipmi_addr_length);
733 
734 static void deliver_response(struct ipmi_recv_msg *msg)
735 {
736         if (!msg->user) {
737                 ipmi_smi_t    intf = msg->user_msg_data;
738 
739                 /* Special handling for NULL users. */
740                 if (intf->null_user_handler) {
741                         intf->null_user_handler(intf, msg);
742                         ipmi_inc_stat(intf, handled_local_responses);
743                 } else {
744                         /* No handler, so give up. */
745                         ipmi_inc_stat(intf, unhandled_local_responses);
746                 }
747                 ipmi_free_recv_msg(msg);
748         } else if (!oops_in_progress) {
749                 /*
750                  * If we are running in the panic context, calling the
751                  * receive handler doesn't much meaning and has a deadlock
752                  * risk.  At this moment, simply skip it in that case.
753                  */
754 
755                 ipmi_user_t user = msg->user;
756                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
757         }
758 }
759 
760 static void
761 deliver_err_response(struct ipmi_recv_msg *msg, int err)
762 {
763         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
764         msg->msg_data[0] = err;
765         msg->msg.netfn |= 1; /* Convert to a response. */
766         msg->msg.data_len = 1;
767         msg->msg.data = msg->msg_data;
768         deliver_response(msg);
769 }
770 
771 /*
772  * Find the next sequence number not being used and add the given
773  * message with the given timeout to the sequence table.  This must be
774  * called with the interface's seq_lock held.
775  */
776 static int intf_next_seq(ipmi_smi_t           intf,
777                          struct ipmi_recv_msg *recv_msg,
778                          unsigned long        timeout,
779                          int                  retries,
780                          int                  broadcast,
781                          unsigned char        *seq,
782                          long                 *seqid)
783 {
784         int          rv = 0;
785         unsigned int i;
786 
787         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
788                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
789                 if (!intf->seq_table[i].inuse)
790                         break;
791         }
792 
793         if (!intf->seq_table[i].inuse) {
794                 intf->seq_table[i].recv_msg = recv_msg;
795 
796                 /*
797                  * Start with the maximum timeout, when the send response
798                  * comes in we will start the real timer.
799                  */
800                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
801                 intf->seq_table[i].orig_timeout = timeout;
802                 intf->seq_table[i].retries_left = retries;
803                 intf->seq_table[i].broadcast = broadcast;
804                 intf->seq_table[i].inuse = 1;
805                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
806                 *seq = i;
807                 *seqid = intf->seq_table[i].seqid;
808                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
809                 need_waiter(intf);
810         } else {
811                 rv = -EAGAIN;
812         }
813 
814         return rv;
815 }
816 
817 /*
818  * Return the receive message for the given sequence number and
819  * release the sequence number so it can be reused.  Some other data
820  * is passed in to be sure the message matches up correctly (to help
821  * guard against message coming in after their timeout and the
822  * sequence number being reused).
823  */
824 static int intf_find_seq(ipmi_smi_t           intf,
825                          unsigned char        seq,
826                          short                channel,
827                          unsigned char        cmd,
828                          unsigned char        netfn,
829                          struct ipmi_addr     *addr,
830                          struct ipmi_recv_msg **recv_msg)
831 {
832         int           rv = -ENODEV;
833         unsigned long flags;
834 
835         if (seq >= IPMI_IPMB_NUM_SEQ)
836                 return -EINVAL;
837 
838         spin_lock_irqsave(&(intf->seq_lock), flags);
839         if (intf->seq_table[seq].inuse) {
840                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
841 
842                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
843                                 && (msg->msg.netfn == netfn)
844                                 && (ipmi_addr_equal(addr, &(msg->addr)))) {
845                         *recv_msg = msg;
846                         intf->seq_table[seq].inuse = 0;
847                         rv = 0;
848                 }
849         }
850         spin_unlock_irqrestore(&(intf->seq_lock), flags);
851 
852         return rv;
853 }
854 
855 
856 /* Start the timer for a specific sequence table entry. */
857 static int intf_start_seq_timer(ipmi_smi_t intf,
858                                 long       msgid)
859 {
860         int           rv = -ENODEV;
861         unsigned long flags;
862         unsigned char seq;
863         unsigned long seqid;
864 
865 
866         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
867 
868         spin_lock_irqsave(&(intf->seq_lock), flags);
869         /*
870          * We do this verification because the user can be deleted
871          * while a message is outstanding.
872          */
873         if ((intf->seq_table[seq].inuse)
874                                 && (intf->seq_table[seq].seqid == seqid)) {
875                 struct seq_table *ent = &(intf->seq_table[seq]);
876                 ent->timeout = ent->orig_timeout;
877                 rv = 0;
878         }
879         spin_unlock_irqrestore(&(intf->seq_lock), flags);
880 
881         return rv;
882 }
883 
884 /* Got an error for the send message for a specific sequence number. */
885 static int intf_err_seq(ipmi_smi_t   intf,
886                         long         msgid,
887                         unsigned int err)
888 {
889         int                  rv = -ENODEV;
890         unsigned long        flags;
891         unsigned char        seq;
892         unsigned long        seqid;
893         struct ipmi_recv_msg *msg = NULL;
894 
895 
896         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
897 
898         spin_lock_irqsave(&(intf->seq_lock), flags);
899         /*
900          * We do this verification because the user can be deleted
901          * while a message is outstanding.
902          */
903         if ((intf->seq_table[seq].inuse)
904                                 && (intf->seq_table[seq].seqid == seqid)) {
905                 struct seq_table *ent = &(intf->seq_table[seq]);
906 
907                 ent->inuse = 0;
908                 msg = ent->recv_msg;
909                 rv = 0;
910         }
911         spin_unlock_irqrestore(&(intf->seq_lock), flags);
912 
913         if (msg)
914                 deliver_err_response(msg, err);
915 
916         return rv;
917 }
918 
919 
920 int ipmi_create_user(unsigned int          if_num,
921                      struct ipmi_user_hndl *handler,
922                      void                  *handler_data,
923                      ipmi_user_t           *user)
924 {
925         unsigned long flags;
926         ipmi_user_t   new_user;
927         int           rv = 0;
928         ipmi_smi_t    intf;
929 
930         /*
931          * There is no module usecount here, because it's not
932          * required.  Since this can only be used by and called from
933          * other modules, they will implicitly use this module, and
934          * thus this can't be removed unless the other modules are
935          * removed.
936          */
937 
938         if (handler == NULL)
939                 return -EINVAL;
940 
941         /*
942          * Make sure the driver is actually initialized, this handles
943          * problems with initialization order.
944          */
945         if (!initialized) {
946                 rv = ipmi_init_msghandler();
947                 if (rv)
948                         return rv;
949 
950                 /*
951                  * The init code doesn't return an error if it was turned
952                  * off, but it won't initialize.  Check that.
953                  */
954                 if (!initialized)
955                         return -ENODEV;
956         }
957 
958         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
959         if (!new_user)
960                 return -ENOMEM;
961 
962         mutex_lock(&ipmi_interfaces_mutex);
963         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
964                 if (intf->intf_num == if_num)
965                         goto found;
966         }
967         /* Not found, return an error */
968         rv = -EINVAL;
969         goto out_kfree;
970 
971  found:
972         /* Note that each existing user holds a refcount to the interface. */
973         kref_get(&intf->refcount);
974 
975         kref_init(&new_user->refcount);
976         new_user->handler = handler;
977         new_user->handler_data = handler_data;
978         new_user->intf = intf;
979         new_user->gets_events = false;
980 
981         if (!try_module_get(intf->handlers->owner)) {
982                 rv = -ENODEV;
983                 goto out_kref;
984         }
985 
986         if (intf->handlers->inc_usecount) {
987                 rv = intf->handlers->inc_usecount(intf->send_info);
988                 if (rv) {
989                         module_put(intf->handlers->owner);
990                         goto out_kref;
991                 }
992         }
993 
994         /*
995          * Hold the lock so intf->handlers is guaranteed to be good
996          * until now
997          */
998         mutex_unlock(&ipmi_interfaces_mutex);
999 
1000         new_user->valid = true;
1001         spin_lock_irqsave(&intf->seq_lock, flags);
1002         list_add_rcu(&new_user->link, &intf->users);
1003         spin_unlock_irqrestore(&intf->seq_lock, flags);
1004         if (handler->ipmi_watchdog_pretimeout) {
1005                 /* User wants pretimeouts, so make sure to watch for them. */
1006                 if (atomic_inc_return(&intf->event_waiters) == 1)
1007                         need_waiter(intf);
1008         }
1009         *user = new_user;
1010         return 0;
1011 
1012 out_kref:
1013         kref_put(&intf->refcount, intf_free);
1014 out_kfree:
1015         mutex_unlock(&ipmi_interfaces_mutex);
1016         kfree(new_user);
1017         return rv;
1018 }
1019 EXPORT_SYMBOL(ipmi_create_user);
1020 
1021 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1022 {
1023         int           rv = 0;
1024         ipmi_smi_t    intf;
1025         const struct ipmi_smi_handlers *handlers;
1026 
1027         mutex_lock(&ipmi_interfaces_mutex);
1028         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1029                 if (intf->intf_num == if_num)
1030                         goto found;
1031         }
1032         /* Not found, return an error */
1033         rv = -EINVAL;
1034         mutex_unlock(&ipmi_interfaces_mutex);
1035         return rv;
1036 
1037 found:
1038         handlers = intf->handlers;
1039         rv = -ENOSYS;
1040         if (handlers->get_smi_info)
1041                 rv = handlers->get_smi_info(intf->send_info, data);
1042         mutex_unlock(&ipmi_interfaces_mutex);
1043 
1044         return rv;
1045 }
1046 EXPORT_SYMBOL(ipmi_get_smi_info);
1047 
1048 static void free_user(struct kref *ref)
1049 {
1050         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1051         kfree(user);
1052 }
1053 
1054 int ipmi_destroy_user(ipmi_user_t user)
1055 {
1056         ipmi_smi_t       intf = user->intf;
1057         int              i;
1058         unsigned long    flags;
1059         struct cmd_rcvr  *rcvr;
1060         struct cmd_rcvr  *rcvrs = NULL;
1061 
1062         user->valid = false;
1063 
1064         if (user->handler->ipmi_watchdog_pretimeout)
1065                 atomic_dec(&intf->event_waiters);
1066 
1067         if (user->gets_events)
1068                 atomic_dec(&intf->event_waiters);
1069 
1070         /* Remove the user from the interface's sequence table. */
1071         spin_lock_irqsave(&intf->seq_lock, flags);
1072         list_del_rcu(&user->link);
1073 
1074         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1075                 if (intf->seq_table[i].inuse
1076                     && (intf->seq_table[i].recv_msg->user == user)) {
1077                         intf->seq_table[i].inuse = 0;
1078                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1079                 }
1080         }
1081         spin_unlock_irqrestore(&intf->seq_lock, flags);
1082 
1083         /*
1084          * Remove the user from the command receiver's table.  First
1085          * we build a list of everything (not using the standard link,
1086          * since other things may be using it till we do
1087          * synchronize_rcu()) then free everything in that list.
1088          */
1089         mutex_lock(&intf->cmd_rcvrs_mutex);
1090         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1091                 if (rcvr->user == user) {
1092                         list_del_rcu(&rcvr->link);
1093                         rcvr->next = rcvrs;
1094                         rcvrs = rcvr;
1095                 }
1096         }
1097         mutex_unlock(&intf->cmd_rcvrs_mutex);
1098         synchronize_rcu();
1099         while (rcvrs) {
1100                 rcvr = rcvrs;
1101                 rcvrs = rcvr->next;
1102                 kfree(rcvr);
1103         }
1104 
1105         mutex_lock(&ipmi_interfaces_mutex);
1106         if (intf->handlers) {
1107                 module_put(intf->handlers->owner);
1108                 if (intf->handlers->dec_usecount)
1109                         intf->handlers->dec_usecount(intf->send_info);
1110         }
1111         mutex_unlock(&ipmi_interfaces_mutex);
1112 
1113         kref_put(&intf->refcount, intf_free);
1114 
1115         kref_put(&user->refcount, free_user);
1116 
1117         return 0;
1118 }
1119 EXPORT_SYMBOL(ipmi_destroy_user);
1120 
1121 void ipmi_get_version(ipmi_user_t   user,
1122                       unsigned char *major,
1123                       unsigned char *minor)
1124 {
1125         *major = user->intf->ipmi_version_major;
1126         *minor = user->intf->ipmi_version_minor;
1127 }
1128 EXPORT_SYMBOL(ipmi_get_version);
1129 
1130 int ipmi_set_my_address(ipmi_user_t   user,
1131                         unsigned int  channel,
1132                         unsigned char address)
1133 {
1134         if (channel >= IPMI_MAX_CHANNELS)
1135                 return -EINVAL;
1136         user->intf->channels[channel].address = address;
1137         return 0;
1138 }
1139 EXPORT_SYMBOL(ipmi_set_my_address);
1140 
1141 int ipmi_get_my_address(ipmi_user_t   user,
1142                         unsigned int  channel,
1143                         unsigned char *address)
1144 {
1145         if (channel >= IPMI_MAX_CHANNELS)
1146                 return -EINVAL;
1147         *address = user->intf->channels[channel].address;
1148         return 0;
1149 }
1150 EXPORT_SYMBOL(ipmi_get_my_address);
1151 
1152 int ipmi_set_my_LUN(ipmi_user_t   user,
1153                     unsigned int  channel,
1154                     unsigned char LUN)
1155 {
1156         if (channel >= IPMI_MAX_CHANNELS)
1157                 return -EINVAL;
1158         user->intf->channels[channel].lun = LUN & 0x3;
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(ipmi_set_my_LUN);
1162 
1163 int ipmi_get_my_LUN(ipmi_user_t   user,
1164                     unsigned int  channel,
1165                     unsigned char *address)
1166 {
1167         if (channel >= IPMI_MAX_CHANNELS)
1168                 return -EINVAL;
1169         *address = user->intf->channels[channel].lun;
1170         return 0;
1171 }
1172 EXPORT_SYMBOL(ipmi_get_my_LUN);
1173 
1174 int ipmi_get_maintenance_mode(ipmi_user_t user)
1175 {
1176         int           mode;
1177         unsigned long flags;
1178 
1179         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1180         mode = user->intf->maintenance_mode;
1181         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1182 
1183         return mode;
1184 }
1185 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1186 
1187 static void maintenance_mode_update(ipmi_smi_t intf)
1188 {
1189         if (intf->handlers->set_maintenance_mode)
1190                 intf->handlers->set_maintenance_mode(
1191                         intf->send_info, intf->maintenance_mode_enable);
1192 }
1193 
1194 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1195 {
1196         int           rv = 0;
1197         unsigned long flags;
1198         ipmi_smi_t    intf = user->intf;
1199 
1200         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1201         if (intf->maintenance_mode != mode) {
1202                 switch (mode) {
1203                 case IPMI_MAINTENANCE_MODE_AUTO:
1204                         intf->maintenance_mode_enable
1205                                 = (intf->auto_maintenance_timeout > 0);
1206                         break;
1207 
1208                 case IPMI_MAINTENANCE_MODE_OFF:
1209                         intf->maintenance_mode_enable = false;
1210                         break;
1211 
1212                 case IPMI_MAINTENANCE_MODE_ON:
1213                         intf->maintenance_mode_enable = true;
1214                         break;
1215 
1216                 default:
1217                         rv = -EINVAL;
1218                         goto out_unlock;
1219                 }
1220                 intf->maintenance_mode = mode;
1221 
1222                 maintenance_mode_update(intf);
1223         }
1224  out_unlock:
1225         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1226 
1227         return rv;
1228 }
1229 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1230 
1231 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1232 {
1233         unsigned long        flags;
1234         ipmi_smi_t           intf = user->intf;
1235         struct ipmi_recv_msg *msg, *msg2;
1236         struct list_head     msgs;
1237 
1238         INIT_LIST_HEAD(&msgs);
1239 
1240         spin_lock_irqsave(&intf->events_lock, flags);
1241         if (user->gets_events == val)
1242                 goto out;
1243 
1244         user->gets_events = val;
1245 
1246         if (val) {
1247                 if (atomic_inc_return(&intf->event_waiters) == 1)
1248                         need_waiter(intf);
1249         } else {
1250                 atomic_dec(&intf->event_waiters);
1251         }
1252 
1253         if (intf->delivering_events)
1254                 /*
1255                  * Another thread is delivering events for this, so
1256                  * let it handle any new events.
1257                  */
1258                 goto out;
1259 
1260         /* Deliver any queued events. */
1261         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1262                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1263                         list_move_tail(&msg->link, &msgs);
1264                 intf->waiting_events_count = 0;
1265                 if (intf->event_msg_printed) {
1266                         printk(KERN_WARNING PFX "Event queue no longer"
1267                                " full\n");
1268                         intf->event_msg_printed = 0;
1269                 }
1270 
1271                 intf->delivering_events = 1;
1272                 spin_unlock_irqrestore(&intf->events_lock, flags);
1273 
1274                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1275                         msg->user = user;
1276                         kref_get(&user->refcount);
1277                         deliver_response(msg);
1278                 }
1279 
1280                 spin_lock_irqsave(&intf->events_lock, flags);
1281                 intf->delivering_events = 0;
1282         }
1283 
1284  out:
1285         spin_unlock_irqrestore(&intf->events_lock, flags);
1286 
1287         return 0;
1288 }
1289 EXPORT_SYMBOL(ipmi_set_gets_events);
1290 
1291 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1292                                       unsigned char netfn,
1293                                       unsigned char cmd,
1294                                       unsigned char chan)
1295 {
1296         struct cmd_rcvr *rcvr;
1297 
1298         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1299                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1300                                         && (rcvr->chans & (1 << chan)))
1301                         return rcvr;
1302         }
1303         return NULL;
1304 }
1305 
1306 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1307                                  unsigned char netfn,
1308                                  unsigned char cmd,
1309                                  unsigned int  chans)
1310 {
1311         struct cmd_rcvr *rcvr;
1312 
1313         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1314                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1315                                         && (rcvr->chans & chans))
1316                         return 0;
1317         }
1318         return 1;
1319 }
1320 
1321 int ipmi_register_for_cmd(ipmi_user_t   user,
1322                           unsigned char netfn,
1323                           unsigned char cmd,
1324                           unsigned int  chans)
1325 {
1326         ipmi_smi_t      intf = user->intf;
1327         struct cmd_rcvr *rcvr;
1328         int             rv = 0;
1329 
1330 
1331         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1332         if (!rcvr)
1333                 return -ENOMEM;
1334         rcvr->cmd = cmd;
1335         rcvr->netfn = netfn;
1336         rcvr->chans = chans;
1337         rcvr->user = user;
1338 
1339         mutex_lock(&intf->cmd_rcvrs_mutex);
1340         /* Make sure the command/netfn is not already registered. */
1341         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1342                 rv = -EBUSY;
1343                 goto out_unlock;
1344         }
1345 
1346         if (atomic_inc_return(&intf->event_waiters) == 1)
1347                 need_waiter(intf);
1348 
1349         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1350 
1351  out_unlock:
1352         mutex_unlock(&intf->cmd_rcvrs_mutex);
1353         if (rv)
1354                 kfree(rcvr);
1355 
1356         return rv;
1357 }
1358 EXPORT_SYMBOL(ipmi_register_for_cmd);
1359 
1360 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1361                             unsigned char netfn,
1362                             unsigned char cmd,
1363                             unsigned int  chans)
1364 {
1365         ipmi_smi_t      intf = user->intf;
1366         struct cmd_rcvr *rcvr;
1367         struct cmd_rcvr *rcvrs = NULL;
1368         int i, rv = -ENOENT;
1369 
1370         mutex_lock(&intf->cmd_rcvrs_mutex);
1371         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1372                 if (((1 << i) & chans) == 0)
1373                         continue;
1374                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1375                 if (rcvr == NULL)
1376                         continue;
1377                 if (rcvr->user == user) {
1378                         rv = 0;
1379                         rcvr->chans &= ~chans;
1380                         if (rcvr->chans == 0) {
1381                                 list_del_rcu(&rcvr->link);
1382                                 rcvr->next = rcvrs;
1383                                 rcvrs = rcvr;
1384                         }
1385                 }
1386         }
1387         mutex_unlock(&intf->cmd_rcvrs_mutex);
1388         synchronize_rcu();
1389         while (rcvrs) {
1390                 atomic_dec(&intf->event_waiters);
1391                 rcvr = rcvrs;
1392                 rcvrs = rcvr->next;
1393                 kfree(rcvr);
1394         }
1395         return rv;
1396 }
1397 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1398 
1399 static unsigned char
1400 ipmb_checksum(unsigned char *data, int size)
1401 {
1402         unsigned char csum = 0;
1403 
1404         for (; size > 0; size--, data++)
1405                 csum += *data;
1406 
1407         return -csum;
1408 }
1409 
1410 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1411                                    struct kernel_ipmi_msg *msg,
1412                                    struct ipmi_ipmb_addr *ipmb_addr,
1413                                    long                  msgid,
1414                                    unsigned char         ipmb_seq,
1415                                    int                   broadcast,
1416                                    unsigned char         source_address,
1417                                    unsigned char         source_lun)
1418 {
1419         int i = broadcast;
1420 
1421         /* Format the IPMB header data. */
1422         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1423         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1424         smi_msg->data[2] = ipmb_addr->channel;
1425         if (broadcast)
1426                 smi_msg->data[3] = 0;
1427         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1428         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1429         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1430         smi_msg->data[i+6] = source_address;
1431         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1432         smi_msg->data[i+8] = msg->cmd;
1433 
1434         /* Now tack on the data to the message. */
1435         if (msg->data_len > 0)
1436                 memcpy(&(smi_msg->data[i+9]), msg->data,
1437                        msg->data_len);
1438         smi_msg->data_size = msg->data_len + 9;
1439 
1440         /* Now calculate the checksum and tack it on. */
1441         smi_msg->data[i+smi_msg->data_size]
1442                 = ipmb_checksum(&(smi_msg->data[i+6]),
1443                                 smi_msg->data_size-6);
1444 
1445         /*
1446          * Add on the checksum size and the offset from the
1447          * broadcast.
1448          */
1449         smi_msg->data_size += 1 + i;
1450 
1451         smi_msg->msgid = msgid;
1452 }
1453 
1454 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1455                                   struct kernel_ipmi_msg *msg,
1456                                   struct ipmi_lan_addr  *lan_addr,
1457                                   long                  msgid,
1458                                   unsigned char         ipmb_seq,
1459                                   unsigned char         source_lun)
1460 {
1461         /* Format the IPMB header data. */
1462         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1463         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1464         smi_msg->data[2] = lan_addr->channel;
1465         smi_msg->data[3] = lan_addr->session_handle;
1466         smi_msg->data[4] = lan_addr->remote_SWID;
1467         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1468         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1469         smi_msg->data[7] = lan_addr->local_SWID;
1470         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1471         smi_msg->data[9] = msg->cmd;
1472 
1473         /* Now tack on the data to the message. */
1474         if (msg->data_len > 0)
1475                 memcpy(&(smi_msg->data[10]), msg->data,
1476                        msg->data_len);
1477         smi_msg->data_size = msg->data_len + 10;
1478 
1479         /* Now calculate the checksum and tack it on. */
1480         smi_msg->data[smi_msg->data_size]
1481                 = ipmb_checksum(&(smi_msg->data[7]),
1482                                 smi_msg->data_size-7);
1483 
1484         /*
1485          * Add on the checksum size and the offset from the
1486          * broadcast.
1487          */
1488         smi_msg->data_size += 1;
1489 
1490         smi_msg->msgid = msgid;
1491 }
1492 
1493 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1494                                              struct ipmi_smi_msg *smi_msg,
1495                                              int priority)
1496 {
1497         if (intf->curr_msg) {
1498                 if (priority > 0)
1499                         list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1500                 else
1501                         list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1502                 smi_msg = NULL;
1503         } else {
1504                 intf->curr_msg = smi_msg;
1505         }
1506 
1507         return smi_msg;
1508 }
1509 
1510 
1511 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
1512                      struct ipmi_smi_msg *smi_msg, int priority)
1513 {
1514         int run_to_completion = intf->run_to_completion;
1515 
1516         if (run_to_completion) {
1517                 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1518         } else {
1519                 unsigned long flags;
1520 
1521                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1522                 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1523                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1524         }
1525 
1526         if (smi_msg)
1527                 handlers->sender(intf->send_info, smi_msg);
1528 }
1529 
1530 /*
1531  * Separate from ipmi_request so that the user does not have to be
1532  * supplied in certain circumstances (mainly at panic time).  If
1533  * messages are supplied, they will be freed, even if an error
1534  * occurs.
1535  */
1536 static int i_ipmi_request(ipmi_user_t          user,
1537                           ipmi_smi_t           intf,
1538                           struct ipmi_addr     *addr,
1539                           long                 msgid,
1540                           struct kernel_ipmi_msg *msg,
1541                           void                 *user_msg_data,
1542                           void                 *supplied_smi,
1543                           struct ipmi_recv_msg *supplied_recv,
1544                           int                  priority,
1545                           unsigned char        source_address,
1546                           unsigned char        source_lun,
1547                           int                  retries,
1548                           unsigned int         retry_time_ms)
1549 {
1550         int                      rv = 0;
1551         struct ipmi_smi_msg      *smi_msg;
1552         struct ipmi_recv_msg     *recv_msg;
1553         unsigned long            flags;
1554 
1555 
1556         if (supplied_recv)
1557                 recv_msg = supplied_recv;
1558         else {
1559                 recv_msg = ipmi_alloc_recv_msg();
1560                 if (recv_msg == NULL)
1561                         return -ENOMEM;
1562         }
1563         recv_msg->user_msg_data = user_msg_data;
1564 
1565         if (supplied_smi)
1566                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1567         else {
1568                 smi_msg = ipmi_alloc_smi_msg();
1569                 if (smi_msg == NULL) {
1570                         ipmi_free_recv_msg(recv_msg);
1571                         return -ENOMEM;
1572                 }
1573         }
1574 
1575         rcu_read_lock();
1576         if (intf->in_shutdown) {
1577                 rv = -ENODEV;
1578                 goto out_err;
1579         }
1580 
1581         recv_msg->user = user;
1582         if (user)
1583                 kref_get(&user->refcount);
1584         recv_msg->msgid = msgid;
1585         /*
1586          * Store the message to send in the receive message so timeout
1587          * responses can get the proper response data.
1588          */
1589         recv_msg->msg = *msg;
1590 
1591         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1592                 struct ipmi_system_interface_addr *smi_addr;
1593 
1594                 if (msg->netfn & 1) {
1595                         /* Responses are not allowed to the SMI. */
1596                         rv = -EINVAL;
1597                         goto out_err;
1598                 }
1599 
1600                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1601                 if (smi_addr->lun > 3) {
1602                         ipmi_inc_stat(intf, sent_invalid_commands);
1603                         rv = -EINVAL;
1604                         goto out_err;
1605                 }
1606 
1607                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1608 
1609                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1610                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1611                         || (msg->cmd == IPMI_GET_MSG_CMD)
1612                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1613                         /*
1614                          * We don't let the user do these, since we manage
1615                          * the sequence numbers.
1616                          */
1617                         ipmi_inc_stat(intf, sent_invalid_commands);
1618                         rv = -EINVAL;
1619                         goto out_err;
1620                 }
1621 
1622                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1623                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1624                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1625                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1626                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1627                         intf->auto_maintenance_timeout
1628                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1629                         if (!intf->maintenance_mode
1630                             && !intf->maintenance_mode_enable) {
1631                                 intf->maintenance_mode_enable = true;
1632                                 maintenance_mode_update(intf);
1633                         }
1634                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1635                                                flags);
1636                 }
1637 
1638                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1639                         ipmi_inc_stat(intf, sent_invalid_commands);
1640                         rv = -EMSGSIZE;
1641                         goto out_err;
1642                 }
1643 
1644                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1645                 smi_msg->data[1] = msg->cmd;
1646                 smi_msg->msgid = msgid;
1647                 smi_msg->user_data = recv_msg;
1648                 if (msg->data_len > 0)
1649                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1650                 smi_msg->data_size = msg->data_len + 2;
1651                 ipmi_inc_stat(intf, sent_local_commands);
1652         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1653                 struct ipmi_ipmb_addr *ipmb_addr;
1654                 unsigned char         ipmb_seq;
1655                 long                  seqid;
1656                 int                   broadcast = 0;
1657 
1658                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1659                         ipmi_inc_stat(intf, sent_invalid_commands);
1660                         rv = -EINVAL;
1661                         goto out_err;
1662                 }
1663 
1664                 if (intf->channels[addr->channel].medium
1665                                         != IPMI_CHANNEL_MEDIUM_IPMB) {
1666                         ipmi_inc_stat(intf, sent_invalid_commands);
1667                         rv = -EINVAL;
1668                         goto out_err;
1669                 }
1670 
1671                 if (retries < 0) {
1672                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1673                         retries = 0; /* Don't retry broadcasts. */
1674                     else
1675                         retries = 4;
1676                 }
1677                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1678                     /*
1679                      * Broadcasts add a zero at the beginning of the
1680                      * message, but otherwise is the same as an IPMB
1681                      * address.
1682                      */
1683                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1684                     broadcast = 1;
1685                 }
1686 
1687 
1688                 /* Default to 1 second retries. */
1689                 if (retry_time_ms == 0)
1690                     retry_time_ms = 1000;
1691 
1692                 /*
1693                  * 9 for the header and 1 for the checksum, plus
1694                  * possibly one for the broadcast.
1695                  */
1696                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1697                         ipmi_inc_stat(intf, sent_invalid_commands);
1698                         rv = -EMSGSIZE;
1699                         goto out_err;
1700                 }
1701 
1702                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1703                 if (ipmb_addr->lun > 3) {
1704                         ipmi_inc_stat(intf, sent_invalid_commands);
1705                         rv = -EINVAL;
1706                         goto out_err;
1707                 }
1708 
1709                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1710 
1711                 if (recv_msg->msg.netfn & 0x1) {
1712                         /*
1713                          * It's a response, so use the user's sequence
1714                          * from msgid.
1715                          */
1716                         ipmi_inc_stat(intf, sent_ipmb_responses);
1717                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1718                                         msgid, broadcast,
1719                                         source_address, source_lun);
1720 
1721                         /*
1722                          * Save the receive message so we can use it
1723                          * to deliver the response.
1724                          */
1725                         smi_msg->user_data = recv_msg;
1726                 } else {
1727                         /* It's a command, so get a sequence for it. */
1728 
1729                         spin_lock_irqsave(&(intf->seq_lock), flags);
1730 
1731                         /*
1732                          * Create a sequence number with a 1 second
1733                          * timeout and 4 retries.
1734                          */
1735                         rv = intf_next_seq(intf,
1736                                            recv_msg,
1737                                            retry_time_ms,
1738                                            retries,
1739                                            broadcast,
1740                                            &ipmb_seq,
1741                                            &seqid);
1742                         if (rv) {
1743                                 /*
1744                                  * We have used up all the sequence numbers,
1745                                  * probably, so abort.
1746                                  */
1747                                 spin_unlock_irqrestore(&(intf->seq_lock),
1748                                                        flags);
1749                                 goto out_err;
1750                         }
1751 
1752                         ipmi_inc_stat(intf, sent_ipmb_commands);
1753 
1754                         /*
1755                          * Store the sequence number in the message,
1756                          * so that when the send message response
1757                          * comes back we can start the timer.
1758                          */
1759                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1760                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1761                                         ipmb_seq, broadcast,
1762                                         source_address, source_lun);
1763 
1764                         /*
1765                          * Copy the message into the recv message data, so we
1766                          * can retransmit it later if necessary.
1767                          */
1768                         memcpy(recv_msg->msg_data, smi_msg->data,
1769                                smi_msg->data_size);
1770                         recv_msg->msg.data = recv_msg->msg_data;
1771                         recv_msg->msg.data_len = smi_msg->data_size;
1772 
1773                         /*
1774                          * We don't unlock until here, because we need
1775                          * to copy the completed message into the
1776                          * recv_msg before we release the lock.
1777                          * Otherwise, race conditions may bite us.  I
1778                          * know that's pretty paranoid, but I prefer
1779                          * to be correct.
1780                          */
1781                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1782                 }
1783         } else if (is_lan_addr(addr)) {
1784                 struct ipmi_lan_addr  *lan_addr;
1785                 unsigned char         ipmb_seq;
1786                 long                  seqid;
1787 
1788                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1789                         ipmi_inc_stat(intf, sent_invalid_commands);
1790                         rv = -EINVAL;
1791                         goto out_err;
1792                 }
1793 
1794                 if ((intf->channels[addr->channel].medium
1795                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
1796                     && (intf->channels[addr->channel].medium
1797                                 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1798                         ipmi_inc_stat(intf, sent_invalid_commands);
1799                         rv = -EINVAL;
1800                         goto out_err;
1801                 }
1802 
1803                 retries = 4;
1804 
1805                 /* Default to 1 second retries. */
1806                 if (retry_time_ms == 0)
1807                     retry_time_ms = 1000;
1808 
1809                 /* 11 for the header and 1 for the checksum. */
1810                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1811                         ipmi_inc_stat(intf, sent_invalid_commands);
1812                         rv = -EMSGSIZE;
1813                         goto out_err;
1814                 }
1815 
1816                 lan_addr = (struct ipmi_lan_addr *) addr;
1817                 if (lan_addr->lun > 3) {
1818                         ipmi_inc_stat(intf, sent_invalid_commands);
1819                         rv = -EINVAL;
1820                         goto out_err;
1821                 }
1822 
1823                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1824 
1825                 if (recv_msg->msg.netfn & 0x1) {
1826                         /*
1827                          * It's a response, so use the user's sequence
1828                          * from msgid.
1829                          */
1830                         ipmi_inc_stat(intf, sent_lan_responses);
1831                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1832                                        msgid, source_lun);
1833 
1834                         /*
1835                          * Save the receive message so we can use it
1836                          * to deliver the response.
1837                          */
1838                         smi_msg->user_data = recv_msg;
1839                 } else {
1840                         /* It's a command, so get a sequence for it. */
1841 
1842                         spin_lock_irqsave(&(intf->seq_lock), flags);
1843 
1844                         /*
1845                          * Create a sequence number with a 1 second
1846                          * timeout and 4 retries.
1847                          */
1848                         rv = intf_next_seq(intf,
1849                                            recv_msg,
1850                                            retry_time_ms,
1851                                            retries,
1852                                            0,
1853                                            &ipmb_seq,
1854                                            &seqid);
1855                         if (rv) {
1856                                 /*
1857                                  * We have used up all the sequence numbers,
1858                                  * probably, so abort.
1859                                  */
1860                                 spin_unlock_irqrestore(&(intf->seq_lock),
1861                                                        flags);
1862                                 goto out_err;
1863                         }
1864 
1865                         ipmi_inc_stat(intf, sent_lan_commands);
1866 
1867                         /*
1868                          * Store the sequence number in the message,
1869                          * so that when the send message response
1870                          * comes back we can start the timer.
1871                          */
1872                         format_lan_msg(smi_msg, msg, lan_addr,
1873                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1874                                        ipmb_seq, source_lun);
1875 
1876                         /*
1877                          * Copy the message into the recv message data, so we
1878                          * can retransmit it later if necessary.
1879                          */
1880                         memcpy(recv_msg->msg_data, smi_msg->data,
1881                                smi_msg->data_size);
1882                         recv_msg->msg.data = recv_msg->msg_data;
1883                         recv_msg->msg.data_len = smi_msg->data_size;
1884 
1885                         /*
1886                          * We don't unlock until here, because we need
1887                          * to copy the completed message into the
1888                          * recv_msg before we release the lock.
1889                          * Otherwise, race conditions may bite us.  I
1890                          * know that's pretty paranoid, but I prefer
1891                          * to be correct.
1892                          */
1893                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1894                 }
1895         } else {
1896             /* Unknown address type. */
1897                 ipmi_inc_stat(intf, sent_invalid_commands);
1898                 rv = -EINVAL;
1899                 goto out_err;
1900         }
1901 
1902 #ifdef DEBUG_MSGING
1903         {
1904                 int m;
1905                 for (m = 0; m < smi_msg->data_size; m++)
1906                         printk(" %2.2x", smi_msg->data[m]);
1907                 printk("\n");
1908         }
1909 #endif
1910 
1911         smi_send(intf, intf->handlers, smi_msg, priority);
1912         rcu_read_unlock();
1913 
1914         return 0;
1915 
1916  out_err:
1917         rcu_read_unlock();
1918         ipmi_free_smi_msg(smi_msg);
1919         ipmi_free_recv_msg(recv_msg);
1920         return rv;
1921 }
1922 
1923 static int check_addr(ipmi_smi_t       intf,
1924                       struct ipmi_addr *addr,
1925                       unsigned char    *saddr,
1926                       unsigned char    *lun)
1927 {
1928         if (addr->channel >= IPMI_MAX_CHANNELS)
1929                 return -EINVAL;
1930         *lun = intf->channels[addr->channel].lun;
1931         *saddr = intf->channels[addr->channel].address;
1932         return 0;
1933 }
1934 
1935 int ipmi_request_settime(ipmi_user_t      user,
1936                          struct ipmi_addr *addr,
1937                          long             msgid,
1938                          struct kernel_ipmi_msg  *msg,
1939                          void             *user_msg_data,
1940                          int              priority,
1941                          int              retries,
1942                          unsigned int     retry_time_ms)
1943 {
1944         unsigned char saddr = 0, lun = 0;
1945         int           rv;
1946 
1947         if (!user)
1948                 return -EINVAL;
1949         rv = check_addr(user->intf, addr, &saddr, &lun);
1950         if (rv)
1951                 return rv;
1952         return i_ipmi_request(user,
1953                               user->intf,
1954                               addr,
1955                               msgid,
1956                               msg,
1957                               user_msg_data,
1958                               NULL, NULL,
1959                               priority,
1960                               saddr,
1961                               lun,
1962                               retries,
1963                               retry_time_ms);
1964 }
1965 EXPORT_SYMBOL(ipmi_request_settime);
1966 
1967 int ipmi_request_supply_msgs(ipmi_user_t          user,
1968                              struct ipmi_addr     *addr,
1969                              long                 msgid,
1970                              struct kernel_ipmi_msg *msg,
1971                              void                 *user_msg_data,
1972                              void                 *supplied_smi,
1973                              struct ipmi_recv_msg *supplied_recv,
1974                              int                  priority)
1975 {
1976         unsigned char saddr = 0, lun = 0;
1977         int           rv;
1978 
1979         if (!user)
1980                 return -EINVAL;
1981         rv = check_addr(user->intf, addr, &saddr, &lun);
1982         if (rv)
1983                 return rv;
1984         return i_ipmi_request(user,
1985                               user->intf,
1986                               addr,
1987                               msgid,
1988                               msg,
1989                               user_msg_data,
1990                               supplied_smi,
1991                               supplied_recv,
1992                               priority,
1993                               saddr,
1994                               lun,
1995                               -1, 0);
1996 }
1997 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1998 
1999 #ifdef CONFIG_PROC_FS
2000 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
2001 {
2002         ipmi_smi_t intf = m->private;
2003         int        i;
2004 
2005         seq_printf(m, "%x", intf->channels[0].address);
2006         for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2007                 seq_printf(m, " %x", intf->channels[i].address);
2008         seq_putc(m, '\n');
2009 
2010         return 0;
2011 }
2012 
2013 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2014 {
2015         return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2016 }
2017 
2018 static const struct file_operations smi_ipmb_proc_ops = {
2019         .open           = smi_ipmb_proc_open,
2020         .read           = seq_read,
2021         .llseek         = seq_lseek,
2022         .release        = single_release,
2023 };
2024 
2025 static int smi_version_proc_show(struct seq_file *m, void *v)
2026 {
2027         ipmi_smi_t intf = m->private;
2028 
2029         seq_printf(m, "%u.%u\n",
2030                    ipmi_version_major(&intf->bmc->id),
2031                    ipmi_version_minor(&intf->bmc->id));
2032 
2033         return 0;
2034 }
2035 
2036 static int smi_version_proc_open(struct inode *inode, struct file *file)
2037 {
2038         return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2039 }
2040 
2041 static const struct file_operations smi_version_proc_ops = {
2042         .open           = smi_version_proc_open,
2043         .read           = seq_read,
2044         .llseek         = seq_lseek,
2045         .release        = single_release,
2046 };
2047 
2048 static int smi_stats_proc_show(struct seq_file *m, void *v)
2049 {
2050         ipmi_smi_t intf = m->private;
2051 
2052         seq_printf(m, "sent_invalid_commands:       %u\n",
2053                        ipmi_get_stat(intf, sent_invalid_commands));
2054         seq_printf(m, "sent_local_commands:         %u\n",
2055                        ipmi_get_stat(intf, sent_local_commands));
2056         seq_printf(m, "handled_local_responses:     %u\n",
2057                        ipmi_get_stat(intf, handled_local_responses));
2058         seq_printf(m, "unhandled_local_responses:   %u\n",
2059                        ipmi_get_stat(intf, unhandled_local_responses));
2060         seq_printf(m, "sent_ipmb_commands:          %u\n",
2061                        ipmi_get_stat(intf, sent_ipmb_commands));
2062         seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2063                        ipmi_get_stat(intf, sent_ipmb_command_errs));
2064         seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2065                        ipmi_get_stat(intf, retransmitted_ipmb_commands));
2066         seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2067                        ipmi_get_stat(intf, timed_out_ipmb_commands));
2068         seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2069                        ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2070         seq_printf(m, "sent_ipmb_responses:         %u\n",
2071                        ipmi_get_stat(intf, sent_ipmb_responses));
2072         seq_printf(m, "handled_ipmb_responses:      %u\n",
2073                        ipmi_get_stat(intf, handled_ipmb_responses));
2074         seq_printf(m, "invalid_ipmb_responses:      %u\n",
2075                        ipmi_get_stat(intf, invalid_ipmb_responses));
2076         seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2077                        ipmi_get_stat(intf, unhandled_ipmb_responses));
2078         seq_printf(m, "sent_lan_commands:           %u\n",
2079                        ipmi_get_stat(intf, sent_lan_commands));
2080         seq_printf(m, "sent_lan_command_errs:       %u\n",
2081                        ipmi_get_stat(intf, sent_lan_command_errs));
2082         seq_printf(m, "retransmitted_lan_commands:  %u\n",
2083                        ipmi_get_stat(intf, retransmitted_lan_commands));
2084         seq_printf(m, "timed_out_lan_commands:      %u\n",
2085                        ipmi_get_stat(intf, timed_out_lan_commands));
2086         seq_printf(m, "sent_lan_responses:          %u\n",
2087                        ipmi_get_stat(intf, sent_lan_responses));
2088         seq_printf(m, "handled_lan_responses:       %u\n",
2089                        ipmi_get_stat(intf, handled_lan_responses));
2090         seq_printf(m, "invalid_lan_responses:       %u\n",
2091                        ipmi_get_stat(intf, invalid_lan_responses));
2092         seq_printf(m, "unhandled_lan_responses:     %u\n",
2093                        ipmi_get_stat(intf, unhandled_lan_responses));
2094         seq_printf(m, "handled_commands:            %u\n",
2095                        ipmi_get_stat(intf, handled_commands));
2096         seq_printf(m, "invalid_commands:            %u\n",
2097                        ipmi_get_stat(intf, invalid_commands));
2098         seq_printf(m, "unhandled_commands:          %u\n",
2099                        ipmi_get_stat(intf, unhandled_commands));
2100         seq_printf(m, "invalid_events:              %u\n",
2101                        ipmi_get_stat(intf, invalid_events));
2102         seq_printf(m, "events:                      %u\n",
2103                        ipmi_get_stat(intf, events));
2104         seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2105                        ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2106         seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2107                        ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2108         return 0;
2109 }
2110 
2111 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2112 {
2113         return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2114 }
2115 
2116 static const struct file_operations smi_stats_proc_ops = {
2117         .open           = smi_stats_proc_open,
2118         .read           = seq_read,
2119         .llseek         = seq_lseek,
2120         .release        = single_release,
2121 };
2122 #endif /* CONFIG_PROC_FS */
2123 
2124 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2125                             const struct file_operations *proc_ops,
2126                             void *data)
2127 {
2128         int                    rv = 0;
2129 #ifdef CONFIG_PROC_FS
2130         struct proc_dir_entry  *file;
2131         struct ipmi_proc_entry *entry;
2132 
2133         /* Create a list element. */
2134         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2135         if (!entry)
2136                 return -ENOMEM;
2137         entry->name = kstrdup(name, GFP_KERNEL);
2138         if (!entry->name) {
2139                 kfree(entry);
2140                 return -ENOMEM;
2141         }
2142 
2143         file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2144         if (!file) {
2145                 kfree(entry->name);
2146                 kfree(entry);
2147                 rv = -ENOMEM;
2148         } else {
2149                 mutex_lock(&smi->proc_entry_lock);
2150                 /* Stick it on the list. */
2151                 entry->next = smi->proc_entries;
2152                 smi->proc_entries = entry;
2153                 mutex_unlock(&smi->proc_entry_lock);
2154         }
2155 #endif /* CONFIG_PROC_FS */
2156 
2157         return rv;
2158 }
2159 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2160 
2161 static int add_proc_entries(ipmi_smi_t smi, int num)
2162 {
2163         int rv = 0;
2164 
2165 #ifdef CONFIG_PROC_FS
2166         sprintf(smi->proc_dir_name, "%d", num);
2167         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2168         if (!smi->proc_dir)
2169                 rv = -ENOMEM;
2170 
2171         if (rv == 0)
2172                 rv = ipmi_smi_add_proc_entry(smi, "stats",
2173                                              &smi_stats_proc_ops,
2174                                              smi);
2175 
2176         if (rv == 0)
2177                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2178                                              &smi_ipmb_proc_ops,
2179                                              smi);
2180 
2181         if (rv == 0)
2182                 rv = ipmi_smi_add_proc_entry(smi, "version",
2183                                              &smi_version_proc_ops,
2184                                              smi);
2185 #endif /* CONFIG_PROC_FS */
2186 
2187         return rv;
2188 }
2189 
2190 static void remove_proc_entries(ipmi_smi_t smi)
2191 {
2192 #ifdef CONFIG_PROC_FS
2193         struct ipmi_proc_entry *entry;
2194 
2195         mutex_lock(&smi->proc_entry_lock);
2196         while (smi->proc_entries) {
2197                 entry = smi->proc_entries;
2198                 smi->proc_entries = entry->next;
2199 
2200                 remove_proc_entry(entry->name, smi->proc_dir);
2201                 kfree(entry->name);
2202                 kfree(entry);
2203         }
2204         mutex_unlock(&smi->proc_entry_lock);
2205         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2206 #endif /* CONFIG_PROC_FS */
2207 }
2208 
2209 static int __find_bmc_guid(struct device *dev, void *data)
2210 {
2211         unsigned char *id = data;
2212         struct bmc_device *bmc = to_bmc_device(dev);
2213         return memcmp(bmc->guid, id, 16) == 0;
2214 }
2215 
2216 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2217                                              unsigned char *guid)
2218 {
2219         struct device *dev;
2220 
2221         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2222         if (dev)
2223                 return to_bmc_device(dev);
2224         else
2225                 return NULL;
2226 }
2227 
2228 struct prod_dev_id {
2229         unsigned int  product_id;
2230         unsigned char device_id;
2231 };
2232 
2233 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2234 {
2235         struct prod_dev_id *id = data;
2236         struct bmc_device *bmc = to_bmc_device(dev);
2237 
2238         return (bmc->id.product_id == id->product_id
2239                 && bmc->id.device_id == id->device_id);
2240 }
2241 
2242 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2243         struct device_driver *drv,
2244         unsigned int product_id, unsigned char device_id)
2245 {
2246         struct prod_dev_id id = {
2247                 .product_id = product_id,
2248                 .device_id = device_id,
2249         };
2250         struct device *dev;
2251 
2252         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2253         if (dev)
2254                 return to_bmc_device(dev);
2255         else
2256                 return NULL;
2257 }
2258 
2259 static ssize_t device_id_show(struct device *dev,
2260                               struct device_attribute *attr,
2261                               char *buf)
2262 {
2263         struct bmc_device *bmc = to_bmc_device(dev);
2264 
2265         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2266 }
2267 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2268 
2269 static ssize_t provides_device_sdrs_show(struct device *dev,
2270                                          struct device_attribute *attr,
2271                                          char *buf)
2272 {
2273         struct bmc_device *bmc = to_bmc_device(dev);
2274 
2275         return snprintf(buf, 10, "%u\n",
2276                         (bmc->id.device_revision & 0x80) >> 7);
2277 }
2278 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2279                    NULL);
2280 
2281 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2282                              char *buf)
2283 {
2284         struct bmc_device *bmc = to_bmc_device(dev);
2285 
2286         return snprintf(buf, 20, "%u\n",
2287                         bmc->id.device_revision & 0x0F);
2288 }
2289 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2290 
2291 static ssize_t firmware_revision_show(struct device *dev,
2292                                       struct device_attribute *attr,
2293                                       char *buf)
2294 {
2295         struct bmc_device *bmc = to_bmc_device(dev);
2296 
2297         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2298                         bmc->id.firmware_revision_2);
2299 }
2300 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2301 
2302 static ssize_t ipmi_version_show(struct device *dev,
2303                                  struct device_attribute *attr,
2304                                  char *buf)
2305 {
2306         struct bmc_device *bmc = to_bmc_device(dev);
2307 
2308         return snprintf(buf, 20, "%u.%u\n",
2309                         ipmi_version_major(&bmc->id),
2310                         ipmi_version_minor(&bmc->id));
2311 }
2312 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2313 
2314 static ssize_t add_dev_support_show(struct device *dev,
2315                                     struct device_attribute *attr,
2316                                     char *buf)
2317 {
2318         struct bmc_device *bmc = to_bmc_device(dev);
2319 
2320         return snprintf(buf, 10, "0x%02x\n",
2321                         bmc->id.additional_device_support);
2322 }
2323 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2324                    NULL);
2325 
2326 static ssize_t manufacturer_id_show(struct device *dev,
2327                                     struct device_attribute *attr,
2328                                     char *buf)
2329 {
2330         struct bmc_device *bmc = to_bmc_device(dev);
2331 
2332         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2333 }
2334 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2335 
2336 static ssize_t product_id_show(struct device *dev,
2337                                struct device_attribute *attr,
2338                                char *buf)
2339 {
2340         struct bmc_device *bmc = to_bmc_device(dev);
2341 
2342         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2343 }
2344 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2345 
2346 static ssize_t aux_firmware_rev_show(struct device *dev,
2347                                      struct device_attribute *attr,
2348                                      char *buf)
2349 {
2350         struct bmc_device *bmc = to_bmc_device(dev);
2351 
2352         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2353                         bmc->id.aux_firmware_revision[3],
2354                         bmc->id.aux_firmware_revision[2],
2355                         bmc->id.aux_firmware_revision[1],
2356                         bmc->id.aux_firmware_revision[0]);
2357 }
2358 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2359 
2360 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2361                          char *buf)
2362 {
2363         struct bmc_device *bmc = to_bmc_device(dev);
2364 
2365         return snprintf(buf, 100, "%Lx%Lx\n",
2366                         (long long) bmc->guid[0],
2367                         (long long) bmc->guid[8]);
2368 }
2369 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2370 
2371 static struct attribute *bmc_dev_attrs[] = {
2372         &dev_attr_device_id.attr,
2373         &dev_attr_provides_device_sdrs.attr,
2374         &dev_attr_revision.attr,
2375         &dev_attr_firmware_revision.attr,
2376         &dev_attr_ipmi_version.attr,
2377         &dev_attr_additional_device_support.attr,
2378         &dev_attr_manufacturer_id.attr,
2379         &dev_attr_product_id.attr,
2380         &dev_attr_aux_firmware_revision.attr,
2381         &dev_attr_guid.attr,
2382         NULL
2383 };
2384 
2385 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2386                                        struct attribute *attr, int idx)
2387 {
2388         struct device *dev = kobj_to_dev(kobj);
2389         struct bmc_device *bmc = to_bmc_device(dev);
2390         umode_t mode = attr->mode;
2391 
2392         if (attr == &dev_attr_aux_firmware_revision.attr)
2393                 return bmc->id.aux_firmware_revision_set ? mode : 0;
2394         if (attr == &dev_attr_guid.attr)
2395                 return bmc->guid_set ? mode : 0;
2396         return mode;
2397 }
2398 
2399 static struct attribute_group bmc_dev_attr_group = {
2400         .attrs          = bmc_dev_attrs,
2401         .is_visible     = bmc_dev_attr_is_visible,
2402 };
2403 
2404 static const struct attribute_group *bmc_dev_attr_groups[] = {
2405         &bmc_dev_attr_group,
2406         NULL
2407 };
2408 
2409 static struct device_type bmc_device_type = {
2410         .groups         = bmc_dev_attr_groups,
2411 };
2412 
2413 static void
2414 release_bmc_device(struct device *dev)
2415 {
2416         kfree(to_bmc_device(dev));
2417 }
2418 
2419 static void
2420 cleanup_bmc_device(struct kref *ref)
2421 {
2422         struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2423 
2424         platform_device_unregister(&bmc->pdev);
2425 }
2426 
2427 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2428 {
2429         struct bmc_device *bmc = intf->bmc;
2430 
2431         sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2432         if (intf->my_dev_name) {
2433                 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2434                 kfree(intf->my_dev_name);
2435                 intf->my_dev_name = NULL;
2436         }
2437 
2438         mutex_lock(&ipmidriver_mutex);
2439         kref_put(&bmc->usecount, cleanup_bmc_device);
2440         intf->bmc = NULL;
2441         mutex_unlock(&ipmidriver_mutex);
2442 }
2443 
2444 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2445 {
2446         int               rv;
2447         struct bmc_device *bmc = intf->bmc;
2448         struct bmc_device *old_bmc;
2449 
2450         mutex_lock(&ipmidriver_mutex);
2451 
2452         /*
2453          * Try to find if there is an bmc_device struct
2454          * representing the interfaced BMC already
2455          */
2456         if (bmc->guid_set)
2457                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2458         else
2459                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2460                                                     bmc->id.product_id,
2461                                                     bmc->id.device_id);
2462 
2463         /*
2464          * If there is already an bmc_device, free the new one,
2465          * otherwise register the new BMC device
2466          */
2467         if (old_bmc) {
2468                 kfree(bmc);
2469                 intf->bmc = old_bmc;
2470                 bmc = old_bmc;
2471 
2472                 kref_get(&bmc->usecount);
2473                 mutex_unlock(&ipmidriver_mutex);
2474 
2475                 printk(KERN_INFO
2476                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2477                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2478                        bmc->id.manufacturer_id,
2479                        bmc->id.product_id,
2480                        bmc->id.device_id);
2481         } else {
2482                 unsigned char orig_dev_id = bmc->id.device_id;
2483                 int warn_printed = 0;
2484 
2485                 snprintf(bmc->name, sizeof(bmc->name),
2486                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2487                 bmc->pdev.name = bmc->name;
2488 
2489                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2490                                                  bmc->id.product_id,
2491                                                  bmc->id.device_id)) {
2492                         if (!warn_printed) {
2493                                 printk(KERN_WARNING PFX
2494                                        "This machine has two different BMCs"
2495                                        " with the same product id and device"
2496                                        " id.  This is an error in the"
2497                                        " firmware, but incrementing the"
2498                                        " device id to work around the problem."
2499                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2500                                        bmc->id.product_id, bmc->id.device_id);
2501                                 warn_printed = 1;
2502                         }
2503                         bmc->id.device_id++; /* Wraps at 255 */
2504                         if (bmc->id.device_id == orig_dev_id) {
2505                                 printk(KERN_ERR PFX
2506                                        "Out of device ids!\n");
2507                                 break;
2508                         }
2509                 }
2510 
2511                 bmc->pdev.dev.driver = &ipmidriver.driver;
2512                 bmc->pdev.id = bmc->id.device_id;
2513                 bmc->pdev.dev.release = release_bmc_device;
2514                 bmc->pdev.dev.type = &bmc_device_type;
2515                 kref_init(&bmc->usecount);
2516 
2517                 rv = platform_device_register(&bmc->pdev);
2518                 mutex_unlock(&ipmidriver_mutex);
2519                 if (rv) {
2520                         put_device(&bmc->pdev.dev);
2521                         printk(KERN_ERR
2522                                "ipmi_msghandler:"
2523                                " Unable to register bmc device: %d\n",
2524                                rv);
2525                         /*
2526                          * Don't go to out_err, you can only do that if
2527                          * the device is registered already.
2528                          */
2529                         return rv;
2530                 }
2531 
2532                 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2533                          "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2534                          bmc->id.manufacturer_id,
2535                          bmc->id.product_id,
2536                          bmc->id.device_id);
2537         }
2538 
2539         /*
2540          * create symlink from system interface device to bmc device
2541          * and back.
2542          */
2543         rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2544         if (rv) {
2545                 printk(KERN_ERR
2546                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2547                        rv);
2548                 goto out_err;
2549         }
2550 
2551         intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2552         if (!intf->my_dev_name) {
2553                 rv = -ENOMEM;
2554                 printk(KERN_ERR
2555                        "ipmi_msghandler: allocate link from BMC: %d\n",
2556                        rv);
2557                 goto out_err;
2558         }
2559 
2560         rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2561                                intf->my_dev_name);
2562         if (rv) {
2563                 kfree(intf->my_dev_name);
2564                 intf->my_dev_name = NULL;
2565                 printk(KERN_ERR
2566                        "ipmi_msghandler:"
2567                        " Unable to create symlink to bmc: %d\n",
2568                        rv);
2569                 goto out_err;
2570         }
2571 
2572         return 0;
2573 
2574 out_err:
2575         ipmi_bmc_unregister(intf);
2576         return rv;
2577 }
2578 
2579 static int
2580 send_guid_cmd(ipmi_smi_t intf, int chan)
2581 {
2582         struct kernel_ipmi_msg            msg;
2583         struct ipmi_system_interface_addr si;
2584 
2585         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2586         si.channel = IPMI_BMC_CHANNEL;
2587         si.lun = 0;
2588 
2589         msg.netfn = IPMI_NETFN_APP_REQUEST;
2590         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2591         msg.data = NULL;
2592         msg.data_len = 0;
2593         return i_ipmi_request(NULL,
2594                               intf,
2595                               (struct ipmi_addr *) &si,
2596                               0,
2597                               &msg,
2598                               intf,
2599                               NULL,
2600                               NULL,
2601                               0,
2602                               intf->channels[0].address,
2603                               intf->channels[0].lun,
2604                               -1, 0);
2605 }
2606 
2607 static void
2608 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2609 {
2610         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2611             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2612             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2613                 /* Not for me */
2614                 return;
2615 
2616         if (msg->msg.data[0] != 0) {
2617                 /* Error from getting the GUID, the BMC doesn't have one. */
2618                 intf->bmc->guid_set = 0;
2619                 goto out;
2620         }
2621 
2622         if (msg->msg.data_len < 17) {
2623                 intf->bmc->guid_set = 0;
2624                 printk(KERN_WARNING PFX
2625                        "guid_handler: The GUID response from the BMC was too"
2626                        " short, it was %d but should have been 17.  Assuming"
2627                        " GUID is not available.\n",
2628                        msg->msg.data_len);
2629                 goto out;
2630         }
2631 
2632         memcpy(intf->bmc->guid, msg->msg.data, 16);
2633         intf->bmc->guid_set = 1;
2634  out:
2635         wake_up(&intf->waitq);
2636 }
2637 
2638 static void
2639 get_guid(ipmi_smi_t intf)
2640 {
2641         int rv;
2642 
2643         intf->bmc->guid_set = 0x2;
2644         intf->null_user_handler = guid_handler;
2645         rv = send_guid_cmd(intf, 0);
2646         if (rv)
2647                 /* Send failed, no GUID available. */
2648                 intf->bmc->guid_set = 0;
2649         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2650         intf->null_user_handler = NULL;
2651 }
2652 
2653 static int
2654 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2655 {
2656         struct kernel_ipmi_msg            msg;
2657         unsigned char                     data[1];
2658         struct ipmi_system_interface_addr si;
2659 
2660         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2661         si.channel = IPMI_BMC_CHANNEL;
2662         si.lun = 0;
2663 
2664         msg.netfn = IPMI_NETFN_APP_REQUEST;
2665         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2666         msg.data = data;
2667         msg.data_len = 1;
2668         data[0] = chan;
2669         return i_ipmi_request(NULL,
2670                               intf,
2671                               (struct ipmi_addr *) &si,
2672                               0,
2673                               &msg,
2674                               intf,
2675                               NULL,
2676                               NULL,
2677                               0,
2678                               intf->channels[0].address,
2679                               intf->channels[0].lun,
2680                               -1, 0);
2681 }
2682 
2683 static void
2684 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2685 {
2686         int rv = 0;
2687         int chan;
2688 
2689         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2690             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2691             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2692                 /* It's the one we want */
2693                 if (msg->msg.data[0] != 0) {
2694                         /* Got an error from the channel, just go on. */
2695 
2696                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2697                                 /*
2698                                  * If the MC does not support this
2699                                  * command, that is legal.  We just
2700                                  * assume it has one IPMB at channel
2701                                  * zero.
2702                                  */
2703                                 intf->channels[0].medium
2704                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2705                                 intf->channels[0].protocol
2706                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2707 
2708                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2709                                 wake_up(&intf->waitq);
2710                                 goto out;
2711                         }
2712                         goto next_channel;
2713                 }
2714                 if (msg->msg.data_len < 4) {
2715                         /* Message not big enough, just go on. */
2716                         goto next_channel;
2717                 }
2718                 chan = intf->curr_channel;
2719                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2720                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2721 
2722  next_channel:
2723                 intf->curr_channel++;
2724                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2725                         wake_up(&intf->waitq);
2726                 else
2727                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2728 
2729                 if (rv) {
2730                         /* Got an error somehow, just give up. */
2731                         printk(KERN_WARNING PFX
2732                                "Error sending channel information for channel"
2733                                " %d: %d\n", intf->curr_channel, rv);
2734 
2735                         intf->curr_channel = IPMI_MAX_CHANNELS;
2736                         wake_up(&intf->waitq);
2737                 }
2738         }
2739  out:
2740         return;
2741 }
2742 
2743 static void ipmi_poll(ipmi_smi_t intf)
2744 {
2745         if (intf->handlers->poll)
2746                 intf->handlers->poll(intf->send_info);
2747         /* In case something came in */
2748         handle_new_recv_msgs(intf);
2749 }
2750 
2751 void ipmi_poll_interface(ipmi_user_t user)
2752 {
2753         ipmi_poll(user->intf);
2754 }
2755 EXPORT_SYMBOL(ipmi_poll_interface);
2756 
2757 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
2758                       void                     *send_info,
2759                       struct ipmi_device_id    *device_id,
2760                       struct device            *si_dev,
2761                       unsigned char            slave_addr)
2762 {
2763         int              i, j;
2764         int              rv;
2765         ipmi_smi_t       intf;
2766         ipmi_smi_t       tintf;
2767         struct list_head *link;
2768 
2769         /*
2770          * Make sure the driver is actually initialized, this handles
2771          * problems with initialization order.
2772          */
2773         if (!initialized) {
2774                 rv = ipmi_init_msghandler();
2775                 if (rv)
2776                         return rv;
2777                 /*
2778                  * The init code doesn't return an error if it was turned
2779                  * off, but it won't initialize.  Check that.
2780                  */
2781                 if (!initialized)
2782                         return -ENODEV;
2783         }
2784 
2785         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2786         if (!intf)
2787                 return -ENOMEM;
2788 
2789         intf->ipmi_version_major = ipmi_version_major(device_id);
2790         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2791 
2792         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2793         if (!intf->bmc) {
2794                 kfree(intf);
2795                 return -ENOMEM;
2796         }
2797         intf->intf_num = -1; /* Mark it invalid for now. */
2798         kref_init(&intf->refcount);
2799         intf->bmc->id = *device_id;
2800         intf->si_dev = si_dev;
2801         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2802                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2803                 intf->channels[j].lun = 2;
2804         }
2805         if (slave_addr != 0)
2806                 intf->channels[0].address = slave_addr;
2807         INIT_LIST_HEAD(&intf->users);
2808         intf->handlers = handlers;
2809         intf->send_info = send_info;
2810         spin_lock_init(&intf->seq_lock);
2811         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2812                 intf->seq_table[j].inuse = 0;
2813                 intf->seq_table[j].seqid = 0;
2814         }
2815         intf->curr_seq = 0;
2816 #ifdef CONFIG_PROC_FS
2817         mutex_init(&intf->proc_entry_lock);
2818 #endif
2819         spin_lock_init(&intf->waiting_rcv_msgs_lock);
2820         INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2821         tasklet_init(&intf->recv_tasklet,
2822                      smi_recv_tasklet,
2823                      (unsigned long) intf);
2824         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2825         spin_lock_init(&intf->xmit_msgs_lock);
2826         INIT_LIST_HEAD(&intf->xmit_msgs);
2827         INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2828         spin_lock_init(&intf->events_lock);
2829         atomic_set(&intf->event_waiters, 0);
2830         intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2831         INIT_LIST_HEAD(&intf->waiting_events);
2832         intf->waiting_events_count = 0;
2833         mutex_init(&intf->cmd_rcvrs_mutex);
2834         spin_lock_init(&intf->maintenance_mode_lock);
2835         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2836         init_waitqueue_head(&intf->waitq);
2837         for (i = 0; i < IPMI_NUM_STATS; i++)
2838                 atomic_set(&intf->stats[i], 0);
2839 
2840         intf->proc_dir = NULL;
2841 
2842         mutex_lock(&smi_watchers_mutex);
2843         mutex_lock(&ipmi_interfaces_mutex);
2844         /* Look for a hole in the numbers. */
2845         i = 0;
2846         link = &ipmi_interfaces;
2847         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2848                 if (tintf->intf_num != i) {
2849                         link = &tintf->link;
2850                         break;
2851                 }
2852                 i++;
2853         }
2854         /* Add the new interface in numeric order. */
2855         if (i == 0)
2856                 list_add_rcu(&intf->link, &ipmi_interfaces);
2857         else
2858                 list_add_tail_rcu(&intf->link, link);
2859 
2860         rv = handlers->start_processing(send_info, intf);
2861         if (rv)
2862                 goto out;
2863 
2864         get_guid(intf);
2865 
2866         if ((intf->ipmi_version_major > 1)
2867                         || ((intf->ipmi_version_major == 1)
2868                             && (intf->ipmi_version_minor >= 5))) {
2869                 /*
2870                  * Start scanning the channels to see what is
2871                  * available.
2872                  */
2873                 intf->null_user_handler = channel_handler;
2874                 intf->curr_channel = 0;
2875                 rv = send_channel_info_cmd(intf, 0);
2876                 if (rv) {
2877                         printk(KERN_WARNING PFX
2878                                "Error sending channel information for channel"
2879                                " 0, %d\n", rv);
2880                         goto out;
2881                 }
2882 
2883                 /* Wait for the channel info to be read. */
2884                 wait_event(intf->waitq,
2885                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2886                 intf->null_user_handler = NULL;
2887         } else {
2888                 /* Assume a single IPMB channel at zero. */
2889                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2890                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2891                 intf->curr_channel = IPMI_MAX_CHANNELS;
2892         }
2893 
2894         if (rv == 0)
2895                 rv = add_proc_entries(intf, i);
2896 
2897         rv = ipmi_bmc_register(intf, i);
2898 
2899  out:
2900         if (rv) {
2901                 if (intf->proc_dir)
2902                         remove_proc_entries(intf);
2903                 intf->handlers = NULL;
2904                 list_del_rcu(&intf->link);
2905                 mutex_unlock(&ipmi_interfaces_mutex);
2906                 mutex_unlock(&smi_watchers_mutex);
2907                 synchronize_rcu();
2908                 kref_put(&intf->refcount, intf_free);
2909         } else {
2910                 /*
2911                  * Keep memory order straight for RCU readers.  Make
2912                  * sure everything else is committed to memory before
2913                  * setting intf_num to mark the interface valid.
2914                  */
2915                 smp_wmb();
2916                 intf->intf_num = i;
2917                 mutex_unlock(&ipmi_interfaces_mutex);
2918                 /* After this point the interface is legal to use. */
2919                 call_smi_watchers(i, intf->si_dev);
2920                 mutex_unlock(&smi_watchers_mutex);
2921         }
2922 
2923         return rv;
2924 }
2925 EXPORT_SYMBOL(ipmi_register_smi);
2926 
2927 static void deliver_smi_err_response(ipmi_smi_t intf,
2928                                      struct ipmi_smi_msg *msg,
2929                                      unsigned char err)
2930 {
2931         msg->rsp[0] = msg->data[0] | 4;
2932         msg->rsp[1] = msg->data[1];
2933         msg->rsp[2] = err;
2934         msg->rsp_size = 3;
2935         /* It's an error, so it will never requeue, no need to check return. */
2936         handle_one_recv_msg(intf, msg);
2937 }
2938 
2939 static void cleanup_smi_msgs(ipmi_smi_t intf)
2940 {
2941         int              i;
2942         struct seq_table *ent;
2943         struct ipmi_smi_msg *msg;
2944         struct list_head *entry;
2945         struct list_head tmplist;
2946 
2947         /* Clear out our transmit queues and hold the messages. */
2948         INIT_LIST_HEAD(&tmplist);
2949         list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2950         list_splice_tail(&intf->xmit_msgs, &tmplist);
2951 
2952         /* Current message first, to preserve order */
2953         while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2954                 /* Wait for the message to clear out. */
2955                 schedule_timeout(1);
2956         }
2957 
2958         /* No need for locks, the interface is down. */
2959 
2960         /*
2961          * Return errors for all pending messages in queue and in the
2962          * tables waiting for remote responses.
2963          */
2964         while (!list_empty(&tmplist)) {
2965                 entry = tmplist.next;
2966                 list_del(entry);
2967                 msg = list_entry(entry, struct ipmi_smi_msg, link);
2968                 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2969         }
2970 
2971         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2972                 ent = &(intf->seq_table[i]);
2973                 if (!ent->inuse)
2974                         continue;
2975                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2976         }
2977 }
2978 
2979 int ipmi_unregister_smi(ipmi_smi_t intf)
2980 {
2981         struct ipmi_smi_watcher *w;
2982         int intf_num = intf->intf_num;
2983         ipmi_user_t user;
2984 
2985         ipmi_bmc_unregister(intf);
2986 
2987         mutex_lock(&smi_watchers_mutex);
2988         mutex_lock(&ipmi_interfaces_mutex);
2989         intf->intf_num = -1;
2990         intf->in_shutdown = true;
2991         list_del_rcu(&intf->link);
2992         mutex_unlock(&ipmi_interfaces_mutex);
2993         synchronize_rcu();
2994 
2995         cleanup_smi_msgs(intf);
2996 
2997         /* Clean up the effects of users on the lower-level software. */
2998         mutex_lock(&ipmi_interfaces_mutex);
2999         rcu_read_lock();
3000         list_for_each_entry_rcu(user, &intf->users, link) {
3001                 module_put(intf->handlers->owner);
3002                 if (intf->handlers->dec_usecount)
3003                         intf->handlers->dec_usecount(intf->send_info);
3004         }
3005         rcu_read_unlock();
3006         intf->handlers = NULL;
3007         mutex_unlock(&ipmi_interfaces_mutex);
3008 
3009         remove_proc_entries(intf);
3010 
3011         /*
3012          * Call all the watcher interfaces to tell them that
3013          * an interface is gone.
3014          */
3015         list_for_each_entry(w, &smi_watchers, link)
3016                 w->smi_gone(intf_num);
3017         mutex_unlock(&smi_watchers_mutex);
3018 
3019         kref_put(&intf->refcount, intf_free);
3020         return 0;
3021 }
3022 EXPORT_SYMBOL(ipmi_unregister_smi);
3023 
3024 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3025                                    struct ipmi_smi_msg *msg)
3026 {
3027         struct ipmi_ipmb_addr ipmb_addr;
3028         struct ipmi_recv_msg  *recv_msg;
3029 
3030         /*
3031          * This is 11, not 10, because the response must contain a
3032          * completion code.
3033          */
3034         if (msg->rsp_size < 11) {
3035                 /* Message not big enough, just ignore it. */
3036                 ipmi_inc_stat(intf, invalid_ipmb_responses);
3037                 return 0;
3038         }
3039 
3040         if (msg->rsp[2] != 0) {
3041                 /* An error getting the response, just ignore it. */
3042                 return 0;
3043         }
3044 
3045         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3046         ipmb_addr.slave_addr = msg->rsp[6];
3047         ipmb_addr.channel = msg->rsp[3] & 0x0f;
3048         ipmb_addr.lun = msg->rsp[7] & 3;
3049 
3050         /*
3051          * It's a response from a remote entity.  Look up the sequence
3052          * number and handle the response.
3053          */
3054         if (intf_find_seq(intf,
3055                           msg->rsp[7] >> 2,
3056                           msg->rsp[3] & 0x0f,
3057                           msg->rsp[8],
3058                           (msg->rsp[4] >> 2) & (~1),
3059                           (struct ipmi_addr *) &(ipmb_addr),
3060                           &recv_msg)) {
3061                 /*
3062                  * We were unable to find the sequence number,
3063                  * so just nuke the message.
3064                  */
3065                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3066                 return 0;
3067         }
3068 
3069         memcpy(recv_msg->msg_data,
3070                &(msg->rsp[9]),
3071                msg->rsp_size - 9);
3072         /*
3073          * The other fields matched, so no need to set them, except
3074          * for netfn, which needs to be the response that was
3075          * returned, not the request value.
3076          */
3077         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3078         recv_msg->msg.data = recv_msg->msg_data;
3079         recv_msg->msg.data_len = msg->rsp_size - 10;
3080         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3081         ipmi_inc_stat(intf, handled_ipmb_responses);
3082         deliver_response(recv_msg);
3083 
3084         return 0;
3085 }
3086 
3087 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3088                                    struct ipmi_smi_msg *msg)
3089 {
3090         struct cmd_rcvr          *rcvr;
3091         int                      rv = 0;
3092         unsigned char            netfn;
3093         unsigned char            cmd;
3094         unsigned char            chan;
3095         ipmi_user_t              user = NULL;
3096         struct ipmi_ipmb_addr    *ipmb_addr;
3097         struct ipmi_recv_msg     *recv_msg;
3098 
3099         if (msg->rsp_size < 10) {
3100                 /* Message not big enough, just ignore it. */
3101                 ipmi_inc_stat(intf, invalid_commands);
3102                 return 0;
3103         }
3104 
3105         if (msg->rsp[2] != 0) {
3106                 /* An error getting the response, just ignore it. */
3107                 return 0;
3108         }
3109 
3110         netfn = msg->rsp[4] >> 2;
3111         cmd = msg->rsp[8];
3112         chan = msg->rsp[3] & 0xf;
3113 
3114         rcu_read_lock();
3115         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3116         if (rcvr) {
3117                 user = rcvr->user;
3118                 kref_get(&user->refcount);
3119         } else
3120                 user = NULL;
3121         rcu_read_unlock();
3122 
3123         if (user == NULL) {
3124                 /* We didn't find a user, deliver an error response. */
3125                 ipmi_inc_stat(intf, unhandled_commands);
3126 
3127                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3128                 msg->data[1] = IPMI_SEND_MSG_CMD;
3129                 msg->data[2] = msg->rsp[3];
3130                 msg->data[3] = msg->rsp[6];
3131                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3132                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3133                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3134                 /* rqseq/lun */
3135                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3136                 msg->data[8] = msg->rsp[8]; /* cmd */
3137                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3138                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3139                 msg->data_size = 11;
3140 
3141 #ifdef DEBUG_MSGING
3142         {
3143                 int m;
3144                 printk("Invalid command:");
3145                 for (m = 0; m < msg->data_size; m++)
3146                         printk(" %2.2x", msg->data[m]);
3147                 printk("\n");
3148         }
3149 #endif
3150                 rcu_read_lock();
3151                 if (!intf->in_shutdown) {
3152                         smi_send(intf, intf->handlers, msg, 0);
3153                         /*
3154                          * We used the message, so return the value
3155                          * that causes it to not be freed or
3156                          * queued.
3157                          */
3158                         rv = -1;
3159                 }
3160                 rcu_read_unlock();
3161         } else {
3162                 /* Deliver the message to the user. */
3163                 ipmi_inc_stat(intf, handled_commands);
3164 
3165                 recv_msg = ipmi_alloc_recv_msg();
3166                 if (!recv_msg) {
3167                         /*
3168                          * We couldn't allocate memory for the
3169                          * message, so requeue it for handling
3170                          * later.
3171                          */
3172                         rv = 1;
3173                         kref_put(&user->refcount, free_user);
3174                 } else {
3175                         /* Extract the source address from the data. */
3176                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3177                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3178                         ipmb_addr->slave_addr = msg->rsp[6];
3179                         ipmb_addr->lun = msg->rsp[7] & 3;
3180                         ipmb_addr->channel = msg->rsp[3] & 0xf;
3181 
3182                         /*
3183                          * Extract the rest of the message information
3184                          * from the IPMB header.
3185                          */
3186                         recv_msg->user = user;
3187                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3188                         recv_msg->msgid = msg->rsp[7] >> 2;
3189                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3190                         recv_msg->msg.cmd = msg->rsp[8];
3191                         recv_msg->msg.data = recv_msg->msg_data;
3192 
3193                         /*
3194                          * We chop off 10, not 9 bytes because the checksum
3195                          * at the end also needs to be removed.
3196                          */
3197                         recv_msg->msg.data_len = msg->rsp_size - 10;
3198                         memcpy(recv_msg->msg_data,
3199                                &(msg->rsp[9]),
3200                                msg->rsp_size - 10);
3201                         deliver_response(recv_msg);
3202                 }
3203         }
3204 
3205         return rv;
3206 }
3207 
3208 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3209                                   struct ipmi_smi_msg *msg)
3210 {
3211         struct ipmi_lan_addr  lan_addr;
3212         struct ipmi_recv_msg  *recv_msg;
3213 
3214 
3215         /*
3216          * This is 13, not 12, because the response must contain a
3217          * completion code.
3218          */
3219         if (msg->rsp_size < 13) {
3220                 /* Message not big enough, just ignore it. */
3221                 ipmi_inc_stat(intf, invalid_lan_responses);
3222                 return 0;
3223         }
3224 
3225         if (msg->rsp[2] != 0) {
3226                 /* An error getting the response, just ignore it. */
3227                 return 0;
3228         }
3229 
3230         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3231         lan_addr.session_handle = msg->rsp[4];
3232         lan_addr.remote_SWID = msg->rsp[8];
3233         lan_addr.local_SWID = msg->rsp[5];
3234         lan_addr.channel = msg->rsp[3] & 0x0f;
3235         lan_addr.privilege = msg->rsp[3] >> 4;
3236         lan_addr.lun = msg->rsp[9] & 3;
3237 
3238         /*
3239          * It's a response from a remote entity.  Look up the sequence
3240          * number and handle the response.
3241          */
3242         if (intf_find_seq(intf,
3243                           msg->rsp[9] >> 2,
3244                           msg->rsp[3] & 0x0f,
3245                           msg->rsp[10],
3246                           (msg->rsp[6] >> 2) & (~1),
3247                           (struct ipmi_addr *) &(lan_addr),
3248                           &recv_msg)) {
3249                 /*
3250                  * We were unable to find the sequence number,
3251                  * so just nuke the message.
3252                  */
3253                 ipmi_inc_stat(intf, unhandled_lan_responses);
3254                 return 0;
3255         }
3256 
3257         memcpy(recv_msg->msg_data,
3258                &(msg->rsp[11]),
3259                msg->rsp_size - 11);
3260         /*
3261          * The other fields matched, so no need to set them, except
3262          * for netfn, which needs to be the response that was
3263          * returned, not the request value.
3264          */
3265         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3266         recv_msg->msg.data = recv_msg->msg_data;
3267         recv_msg->msg.data_len = msg->rsp_size - 12;
3268         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3269         ipmi_inc_stat(intf, handled_lan_responses);
3270         deliver_response(recv_msg);
3271 
3272         return 0;
3273 }
3274 
3275 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3276                                   struct ipmi_smi_msg *msg)
3277 {
3278         struct cmd_rcvr          *rcvr;
3279         int                      rv = 0;
3280         unsigned char            netfn;
3281         unsigned char            cmd;
3282         unsigned char            chan;
3283         ipmi_user_t              user = NULL;
3284         struct ipmi_lan_addr     *lan_addr;
3285         struct ipmi_recv_msg     *recv_msg;
3286 
3287         if (msg->rsp_size < 12) {
3288                 /* Message not big enough, just ignore it. */
3289                 ipmi_inc_stat(intf, invalid_commands);
3290                 return 0;
3291         }
3292 
3293         if (msg->rsp[2] != 0) {
3294                 /* An error getting the response, just ignore it. */
3295                 return 0;
3296         }
3297 
3298         netfn = msg->rsp[6] >> 2;
3299         cmd = msg->rsp[10];
3300         chan = msg->rsp[3] & 0xf;
3301 
3302         rcu_read_lock();
3303         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3304         if (rcvr) {
3305                 user = rcvr->user;
3306                 kref_get(&user->refcount);
3307         } else
3308                 user = NULL;
3309         rcu_read_unlock();
3310 
3311         if (user == NULL) {
3312                 /* We didn't find a user, just give up. */
3313                 ipmi_inc_stat(intf, unhandled_commands);
3314 
3315                 /*
3316                  * Don't do anything with these messages, just allow
3317                  * them to be freed.
3318                  */
3319                 rv = 0;
3320         } else {
3321                 /* Deliver the message to the user. */
3322                 ipmi_inc_stat(intf, handled_commands);
3323 
3324                 recv_msg = ipmi_alloc_recv_msg();
3325                 if (!recv_msg) {
3326                         /*
3327                          * We couldn't allocate memory for the
3328                          * message, so requeue it for handling later.
3329                          */
3330                         rv = 1;
3331                         kref_put(&user->refcount, free_user);
3332                 } else {
3333                         /* Extract the source address from the data. */
3334                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3335                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3336                         lan_addr->session_handle = msg->rsp[4];
3337                         lan_addr->remote_SWID = msg->rsp[8];
3338                         lan_addr->local_SWID = msg->rsp[5];
3339                         lan_addr->lun = msg->rsp[9] & 3;
3340                         lan_addr->channel = msg->rsp[3] & 0xf;
3341                         lan_addr->privilege = msg->rsp[3] >> 4;
3342 
3343                         /*
3344                          * Extract the rest of the message information
3345                          * from the IPMB header.
3346                          */
3347                         recv_msg->user = user;
3348                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3349                         recv_msg->msgid = msg->rsp[9] >> 2;
3350                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3351                         recv_msg->msg.cmd = msg->rsp[10];
3352                         recv_msg->msg.data = recv_msg->msg_data;
3353 
3354                         /*
3355                          * We chop off 12, not 11 bytes because the checksum
3356                          * at the end also needs to be removed.
3357                          */
3358                         recv_msg->msg.data_len = msg->rsp_size - 12;
3359                         memcpy(recv_msg->msg_data,
3360                                &(msg->rsp[11]),
3361                                msg->rsp_size - 12);
3362                         deliver_response(recv_msg);
3363                 }
3364         }
3365 
3366         return rv;
3367 }
3368 
3369 /*
3370  * This routine will handle "Get Message" command responses with
3371  * channels that use an OEM Medium. The message format belongs to
3372  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3373  * Chapter 22, sections 22.6 and 22.24 for more details.
3374  */
3375 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3376                                   struct ipmi_smi_msg *msg)
3377 {
3378         struct cmd_rcvr       *rcvr;
3379         int                   rv = 0;
3380         unsigned char         netfn;
3381         unsigned char         cmd;
3382         unsigned char         chan;
3383         ipmi_user_t           user = NULL;
3384         struct ipmi_system_interface_addr *smi_addr;
3385         struct ipmi_recv_msg  *recv_msg;
3386 
3387         /*
3388          * We expect the OEM SW to perform error checking
3389          * so we just do some basic sanity checks
3390          */
3391         if (msg->rsp_size < 4) {
3392                 /* Message not big enough, just ignore it. */
3393                 ipmi_inc_stat(intf, invalid_commands);
3394                 return 0;
3395         }
3396 
3397         if (msg->rsp[2] != 0) {
3398                 /* An error getting the response, just ignore it. */
3399                 return 0;
3400         }
3401 
3402         /*
3403          * This is an OEM Message so the OEM needs to know how
3404          * handle the message. We do no interpretation.
3405          */
3406         netfn = msg->rsp[0] >> 2;
3407         cmd = msg->rsp[1];
3408         chan = msg->rsp[3] & 0xf;
3409 
3410         rcu_read_lock();
3411         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3412         if (rcvr) {
3413                 user = rcvr->user;
3414                 kref_get(&user->refcount);
3415         } else
3416                 user = NULL;
3417         rcu_read_unlock();
3418 
3419         if (user == NULL) {
3420                 /* We didn't find a user, just give up. */
3421                 ipmi_inc_stat(intf, unhandled_commands);
3422 
3423                 /*
3424                  * Don't do anything with these messages, just allow
3425                  * them to be freed.
3426                  */
3427 
3428                 rv = 0;
3429         } else {
3430                 /* Deliver the message to the user. */
3431                 ipmi_inc_stat(intf, handled_commands);
3432 
3433                 recv_msg = ipmi_alloc_recv_msg();
3434                 if (!recv_msg) {
3435                         /*
3436                          * We couldn't allocate memory for the
3437                          * message, so requeue it for handling
3438                          * later.
3439                          */
3440                         rv = 1;
3441                         kref_put(&user->refcount, free_user);
3442                 } else {
3443                         /*
3444                          * OEM Messages are expected to be delivered via
3445                          * the system interface to SMS software.  We might
3446                          * need to visit this again depending on OEM
3447                          * requirements
3448                          */
3449                         smi_addr = ((struct ipmi_system_interface_addr *)
3450                                     &(recv_msg->addr));
3451                         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3452                         smi_addr->channel = IPMI_BMC_CHANNEL;
3453                         smi_addr->lun = msg->rsp[0] & 3;
3454 
3455                         recv_msg->user = user;
3456                         recv_msg->user_msg_data = NULL;
3457                         recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3458                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3459                         recv_msg->msg.cmd = msg->rsp[1];
3460                         recv_msg->msg.data = recv_msg->msg_data;
3461 
3462                         /*
3463                          * The message starts at byte 4 which follows the
3464                          * the Channel Byte in the "GET MESSAGE" command
3465                          */
3466                         recv_msg->msg.data_len = msg->rsp_size - 4;
3467                         memcpy(recv_msg->msg_data,
3468                                &(msg->rsp[4]),
3469                                msg->rsp_size - 4);
3470                         deliver_response(recv_msg);
3471                 }
3472         }
3473 
3474         return rv;
3475 }
3476 
3477 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3478                                      struct ipmi_smi_msg  *msg)
3479 {
3480         struct ipmi_system_interface_addr *smi_addr;
3481 
3482         recv_msg->msgid = 0;
3483         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3484         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3485         smi_addr->channel = IPMI_BMC_CHANNEL;
3486         smi_addr->lun = msg->rsp[0] & 3;
3487         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3488         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3489         recv_msg->msg.cmd = msg->rsp[1];
3490         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3491         recv_msg->msg.data = recv_msg->msg_data;
3492         recv_msg->msg.data_len = msg->rsp_size - 3;
3493 }
3494 
3495 static int handle_read_event_rsp(ipmi_smi_t          intf,
3496                                  struct ipmi_smi_msg *msg)
3497 {
3498         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3499         struct list_head     msgs;
3500         ipmi_user_t          user;
3501         int                  rv = 0;
3502         int                  deliver_count = 0;
3503         unsigned long        flags;
3504 
3505         if (msg->rsp_size < 19) {
3506                 /* Message is too small to be an IPMB event. */
3507                 ipmi_inc_stat(intf, invalid_events);
3508                 return 0;
3509         }
3510 
3511         if (msg->rsp[2] != 0) {
3512                 /* An error getting the event, just ignore it. */
3513                 return 0;
3514         }
3515 
3516         INIT_LIST_HEAD(&msgs);
3517 
3518         spin_lock_irqsave(&intf->events_lock, flags);
3519 
3520         ipmi_inc_stat(intf, events);
3521 
3522         /*
3523          * Allocate and fill in one message for every user that is
3524          * getting events.
3525          */
3526         rcu_read_lock();
3527         list_for_each_entry_rcu(user, &intf->users, link) {
3528                 if (!user->gets_events)
3529                         continue;
3530 
3531                 recv_msg = ipmi_alloc_recv_msg();
3532                 if (!recv_msg) {
3533                         rcu_read_unlock();
3534                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3535                                                  link) {
3536                                 list_del(&recv_msg->link);
3537                                 ipmi_free_recv_msg(recv_msg);
3538                         }
3539                         /*
3540                          * We couldn't allocate memory for the
3541                          * message, so requeue it for handling
3542                          * later.
3543                          */
3544                         rv = 1;
3545                         goto out;
3546                 }
3547 
3548                 deliver_count++;
3549 
3550                 copy_event_into_recv_msg(recv_msg, msg);
3551                 recv_msg->user = user;
3552                 kref_get(&user->refcount);
3553                 list_add_tail(&(recv_msg->link), &msgs);
3554         }
3555         rcu_read_unlock();
3556 
3557         if (deliver_count) {
3558                 /* Now deliver all the messages. */
3559                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3560                         list_del(&recv_msg->link);
3561                         deliver_response(recv_msg);
3562                 }
3563         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3564                 /*
3565                  * No one to receive the message, put it in queue if there's
3566                  * not already too many things in the queue.
3567                  */
3568                 recv_msg = ipmi_alloc_recv_msg();
3569                 if (!recv_msg) {
3570                         /*
3571                          * We couldn't allocate memory for the
3572                          * message, so requeue it for handling
3573                          * later.
3574                          */
3575                         rv = 1;
3576                         goto out;
3577                 }
3578 
3579                 copy_event_into_recv_msg(recv_msg, msg);
3580                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3581                 intf->waiting_events_count++;
3582         } else if (!intf->event_msg_printed) {
3583                 /*
3584                  * There's too many things in the queue, discard this
3585                  * message.
3586                  */
3587                 printk(KERN_WARNING PFX "Event queue full, discarding"
3588                        " incoming events\n");
3589                 intf->event_msg_printed = 1;
3590         }
3591 
3592  out:
3593         spin_unlock_irqrestore(&(intf->events_lock), flags);
3594 
3595         return rv;
3596 }
3597 
3598 static int handle_bmc_rsp(ipmi_smi_t          intf,
3599                           struct ipmi_smi_msg *msg)
3600 {
3601         struct ipmi_recv_msg *recv_msg;
3602         struct ipmi_user     *user;
3603 
3604         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3605         if (recv_msg == NULL) {
3606                 printk(KERN_WARNING
3607                        "IPMI message received with no owner. This\n"
3608                        "could be because of a malformed message, or\n"
3609                        "because of a hardware error.  Contact your\n"
3610                        "hardware vender for assistance\n");
3611                 return 0;
3612         }
3613 
3614         user = recv_msg->user;
3615         /* Make sure the user still exists. */
3616         if (user && !user->valid) {
3617                 /* The user for the message went away, so give up. */
3618                 ipmi_inc_stat(intf, unhandled_local_responses);
3619                 ipmi_free_recv_msg(recv_msg);
3620         } else {
3621                 struct ipmi_system_interface_addr *smi_addr;
3622 
3623                 ipmi_inc_stat(intf, handled_local_responses);
3624                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3625                 recv_msg->msgid = msg->msgid;
3626                 smi_addr = ((struct ipmi_system_interface_addr *)
3627                             &(recv_msg->addr));
3628                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3629                 smi_addr->channel = IPMI_BMC_CHANNEL;
3630                 smi_addr->lun = msg->rsp[0] & 3;
3631                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3632                 recv_msg->msg.cmd = msg->rsp[1];
3633                 memcpy(recv_msg->msg_data,
3634                        &(msg->rsp[2]),
3635                        msg->rsp_size - 2);
3636                 recv_msg->msg.data = recv_msg->msg_data;
3637                 recv_msg->msg.data_len = msg->rsp_size - 2;
3638                 deliver_response(recv_msg);
3639         }
3640 
3641         return 0;
3642 }
3643 
3644 /*
3645  * Handle a received message.  Return 1 if the message should be requeued,
3646  * 0 if the message should be freed, or -1 if the message should not
3647  * be freed or requeued.
3648  */
3649 static int handle_one_recv_msg(ipmi_smi_t          intf,
3650                                struct ipmi_smi_msg *msg)
3651 {
3652         int requeue;
3653         int chan;
3654 
3655 #ifdef DEBUG_MSGING
3656         int m;
3657         printk("Recv:");
3658         for (m = 0; m < msg->rsp_size; m++)
3659                 printk(" %2.2x", msg->rsp[m]);
3660         printk("\n");
3661 #endif
3662         if (msg->rsp_size < 2) {
3663                 /* Message is too small to be correct. */
3664                 printk(KERN_WARNING PFX "BMC returned to small a message"
3665                        " for netfn %x cmd %x, got %d bytes\n",
3666                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3667 
3668                 /* Generate an error response for the message. */
3669                 msg->rsp[0] = msg->data[0] | (1 << 2);
3670                 msg->rsp[1] = msg->data[1];
3671                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3672                 msg->rsp_size = 3;
3673         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3674                    || (msg->rsp[1] != msg->data[1])) {
3675                 /*
3676                  * The NetFN and Command in the response is not even
3677                  * marginally correct.
3678                  */
3679                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3680                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3681                        (msg->data[0] >> 2) | 1, msg->data[1],
3682                        msg->rsp[0] >> 2, msg->rsp[1]);
3683 
3684                 /* Generate an error response for the message. */
3685                 msg->rsp[0] = msg->data[0] | (1 << 2);
3686                 msg->rsp[1] = msg->data[1];
3687                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3688                 msg->rsp_size = 3;
3689         }
3690 
3691         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3692             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3693             && (msg->user_data != NULL)) {
3694                 /*
3695                  * It's a response to a response we sent.  For this we
3696                  * deliver a send message response to the user.
3697                  */
3698                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3699 
3700                 requeue = 0;
3701                 if (msg->rsp_size < 2)
3702                         /* Message is too small to be correct. */
3703                         goto out;
3704 
3705                 chan = msg->data[2] & 0x0f;
3706                 if (chan >= IPMI_MAX_CHANNELS)
3707                         /* Invalid channel number */
3708                         goto out;
3709 
3710                 if (!recv_msg)
3711                         goto out;
3712 
3713                 /* Make sure the user still exists. */
3714                 if (!recv_msg->user || !recv_msg->user->valid)
3715                         goto out;
3716 
3717                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3718                 recv_msg->msg.data = recv_msg->msg_data;
3719                 recv_msg->msg.data_len = 1;
3720                 recv_msg->msg_data[0] = msg->rsp[2];
3721                 deliver_response(recv_msg);
3722         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3723                    && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3724                 /* It's from the receive queue. */
3725                 chan = msg->rsp[3] & 0xf;
3726                 if (chan >= IPMI_MAX_CHANNELS) {
3727                         /* Invalid channel number */
3728                         requeue = 0;
3729                         goto out;
3730                 }
3731 
3732                 /*
3733                  * We need to make sure the channels have been initialized.
3734                  * The channel_handler routine will set the "curr_channel"
3735                  * equal to or greater than IPMI_MAX_CHANNELS when all the
3736                  * channels for this interface have been initialized.
3737                  */
3738                 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3739                         requeue = 0; /* Throw the message away */
3740                         goto out;
3741                 }
3742 
3743                 switch (intf->channels[chan].medium) {
3744                 case IPMI_CHANNEL_MEDIUM_IPMB:
3745                         if (msg->rsp[4] & 0x04) {
3746                                 /*
3747                                  * It's a response, so find the
3748                                  * requesting message and send it up.
3749                                  */
3750                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3751                         } else {
3752                                 /*
3753                                  * It's a command to the SMS from some other
3754                                  * entity.  Handle that.
3755                                  */
3756                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3757                         }
3758                         break;
3759 
3760                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3761                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3762                         if (msg->rsp[6] & 0x04) {
3763                                 /*
3764                                  * It's a response, so find the
3765                                  * requesting message and send it up.
3766                                  */
3767                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3768                         } else {
3769                                 /*
3770                                  * It's a command to the SMS from some other
3771                                  * entity.  Handle that.
3772                                  */
3773                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3774                         }
3775                         break;
3776 
3777                 default:
3778                         /* Check for OEM Channels.  Clients had better
3779                            register for these commands. */
3780                         if ((intf->channels[chan].medium
3781                              >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3782                             && (intf->channels[chan].medium
3783                                 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3784                                 requeue = handle_oem_get_msg_cmd(intf, msg);
3785                         } else {
3786                                 /*
3787                                  * We don't handle the channel type, so just
3788                                  * free the message.
3789                                  */
3790                                 requeue = 0;
3791                         }
3792                 }
3793 
3794         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3795                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3796                 /* It's an asynchronous event. */
3797                 requeue = handle_read_event_rsp(intf, msg);
3798         } else {
3799                 /* It's a response from the local BMC. */
3800                 requeue = handle_bmc_rsp(intf, msg);
3801         }
3802 
3803  out:
3804         return requeue;
3805 }
3806 
3807 /*
3808  * If there are messages in the queue or pretimeouts, handle them.
3809  */
3810 static void handle_new_recv_msgs(ipmi_smi_t intf)
3811 {
3812         struct ipmi_smi_msg  *smi_msg;
3813         unsigned long        flags = 0;
3814         int                  rv;
3815         int                  run_to_completion = intf->run_to_completion;
3816 
3817         /* See if any waiting messages need to be processed. */
3818         if (!run_to_completion)
3819                 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3820         while (!list_empty(&intf->waiting_rcv_msgs)) {
3821                 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3822                                      struct ipmi_smi_msg, link);
3823                 list_del(&smi_msg->link);
3824                 if (!run_to_completion)
3825                         spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3826                                                flags);
3827                 rv = handle_one_recv_msg(intf, smi_msg);
3828                 if (!run_to_completion)
3829                         spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3830                 if (rv > 0) {
3831                         /*
3832                          * To preserve message order, quit if we
3833                          * can't handle a message.  Add the message
3834                          * back at the head, this is safe because this
3835                          * tasklet is the only thing that pulls the
3836                          * messages.
3837                          */
3838                         list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
3839                         break;
3840                 } else {
3841                         if (rv == 0)
3842                                 /* Message handled */
3843                                 ipmi_free_smi_msg(smi_msg);
3844                         /* If rv < 0, fatal error, del but don't free. */
3845                 }
3846         }
3847         if (!run_to_completion)
3848                 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3849 
3850         /*
3851          * If the pretimout count is non-zero, decrement one from it and
3852          * deliver pretimeouts to all the users.
3853          */
3854         if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3855                 ipmi_user_t user;
3856 
3857                 rcu_read_lock();
3858                 list_for_each_entry_rcu(user, &intf->users, link) {
3859                         if (user->handler->ipmi_watchdog_pretimeout)
3860                                 user->handler->ipmi_watchdog_pretimeout(
3861                                         user->handler_data);
3862                 }
3863                 rcu_read_unlock();
3864         }
3865 }
3866 
3867 static void smi_recv_tasklet(unsigned long val)
3868 {
3869         unsigned long flags = 0; /* keep us warning-free. */
3870         ipmi_smi_t intf = (ipmi_smi_t) val;
3871         int run_to_completion = intf->run_to_completion;
3872         struct ipmi_smi_msg *newmsg = NULL;
3873 
3874         /*
3875          * Start the next message if available.
3876          *
3877          * Do this here, not in the actual receiver, because we may deadlock
3878          * because the lower layer is allowed to hold locks while calling
3879          * message delivery.
3880          */
3881         if (!run_to_completion)
3882                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3883         if (intf->curr_msg == NULL && !intf->in_shutdown) {
3884                 struct list_head *entry = NULL;
3885 
3886                 /* Pick the high priority queue first. */
3887                 if (!list_empty(&intf->hp_xmit_msgs))
3888                         entry = intf->hp_xmit_msgs.next;
3889                 else if (!list_empty(&intf->xmit_msgs))
3890                         entry = intf->xmit_msgs.next;
3891 
3892                 if (entry) {
3893                         list_del(entry);
3894                         newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3895                         intf->curr_msg = newmsg;
3896                 }
3897         }
3898         if (!run_to_completion)
3899                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3900         if (newmsg)
3901                 intf->handlers->sender(intf->send_info, newmsg);
3902 
3903         handle_new_recv_msgs(intf);
3904 }
3905 
3906 /* Handle a new message from the lower layer. */
3907 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3908                            struct ipmi_smi_msg *msg)
3909 {
3910         unsigned long flags = 0; /* keep us warning-free. */
3911         int run_to_completion = intf->run_to_completion;
3912 
3913         if ((msg->data_size >= 2)
3914             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3915             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3916             && (msg->user_data == NULL)) {
3917 
3918                 if (intf->in_shutdown)
3919                         goto free_msg;
3920 
3921                 /*
3922                  * This is the local response to a command send, start
3923                  * the timer for these.  The user_data will not be
3924                  * NULL if this is a response send, and we will let
3925                  * response sends just go through.
3926                  */
3927 
3928                 /*
3929                  * Check for errors, if we get certain errors (ones
3930                  * that mean basically we can try again later), we
3931                  * ignore them and start the timer.  Otherwise we
3932                  * report the error immediately.
3933                  */
3934                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3935                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3936                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3937                     && (msg->rsp[2] != IPMI_BUS_ERR)
3938                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3939                         int chan = msg->rsp[3] & 0xf;
3940 
3941                         /* Got an error sending the message, handle it. */
3942                         if (chan >= IPMI_MAX_CHANNELS)
3943                                 ; /* This shouldn't happen */
3944                         else if ((intf->channels[chan].medium
3945                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3946                                  || (intf->channels[chan].medium
3947                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3948                                 ipmi_inc_stat(intf, sent_lan_command_errs);
3949                         else
3950                                 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3951                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3952                 } else
3953                         /* The message was sent, start the timer. */
3954                         intf_start_seq_timer(intf, msg->msgid);
3955 
3956 free_msg:
3957                 ipmi_free_smi_msg(msg);
3958         } else {
3959                 /*
3960                  * To preserve message order, we keep a queue and deliver from
3961                  * a tasklet.
3962                  */
3963                 if (!run_to_completion)
3964                         spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3965                 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3966                 if (!run_to_completion)
3967                         spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3968                                                flags);
3969         }
3970 
3971         if (!run_to_completion)
3972                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3973         /*
3974          * We can get an asynchronous event or receive message in addition
3975          * to commands we send.
3976          */
3977         if (msg == intf->curr_msg)
3978                 intf->curr_msg = NULL;
3979         if (!run_to_completion)
3980                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3981 
3982         if (run_to_completion)
3983                 smi_recv_tasklet((unsigned long) intf);
3984         else
3985                 tasklet_schedule(&intf->recv_tasklet);
3986 }
3987 EXPORT_SYMBOL(ipmi_smi_msg_received);
3988 
3989 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3990 {
3991         if (intf->in_shutdown)
3992                 return;
3993 
3994         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3995         tasklet_schedule(&intf->recv_tasklet);
3996 }
3997 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3998 
3999 static struct ipmi_smi_msg *
4000 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
4001                   unsigned char seq, long seqid)
4002 {
4003         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4004         if (!smi_msg)
4005                 /*
4006                  * If we can't allocate the message, then just return, we
4007                  * get 4 retries, so this should be ok.
4008                  */
4009                 return NULL;
4010 
4011         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4012         smi_msg->data_size = recv_msg->msg.data_len;
4013         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4014 
4015 #ifdef DEBUG_MSGING
4016         {
4017                 int m;
4018                 printk("Resend: ");
4019                 for (m = 0; m < smi_msg->data_size; m++)
4020                         printk(" %2.2x", smi_msg->data[m]);
4021                 printk("\n");
4022         }
4023 #endif
4024         return smi_msg;
4025 }
4026 
4027 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4028                               struct list_head *timeouts, long timeout_period,
4029                               int slot, unsigned long *flags,
4030                               unsigned int *waiting_msgs)
4031 {
4032         struct ipmi_recv_msg     *msg;
4033         const struct ipmi_smi_handlers *handlers;
4034 
4035         if (intf->in_shutdown)
4036                 return;
4037 
4038         if (!ent->inuse)
4039                 return;
4040 
4041         ent->timeout -= timeout_period;
4042         if (ent->timeout > 0) {
4043                 (*waiting_msgs)++;
4044                 return;
4045         }
4046 
4047         if (ent->retries_left == 0) {
4048                 /* The message has used all its retries. */
4049                 ent->inuse = 0;
4050                 msg = ent->recv_msg;
4051                 list_add_tail(&msg->link, timeouts);
4052                 if (ent->broadcast)
4053                         ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4054                 else if (is_lan_addr(&ent->recv_msg->addr))
4055                         ipmi_inc_stat(intf, timed_out_lan_commands);
4056                 else
4057                         ipmi_inc_stat(intf, timed_out_ipmb_commands);
4058         } else {
4059                 struct ipmi_smi_msg *smi_msg;
4060                 /* More retries, send again. */
4061 
4062                 (*waiting_msgs)++;
4063 
4064                 /*
4065                  * Start with the max timer, set to normal timer after
4066                  * the message is sent.
4067                  */
4068                 ent->timeout = MAX_MSG_TIMEOUT;
4069                 ent->retries_left--;
4070                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4071                                             ent->seqid);
4072                 if (!smi_msg) {
4073                         if (is_lan_addr(&ent->recv_msg->addr))
4074                                 ipmi_inc_stat(intf,
4075                                               dropped_rexmit_lan_commands);
4076                         else
4077                                 ipmi_inc_stat(intf,
4078                                               dropped_rexmit_ipmb_commands);
4079                         return;
4080                 }
4081 
4082                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4083 
4084                 /*
4085                  * Send the new message.  We send with a zero
4086                  * priority.  It timed out, I doubt time is that
4087                  * critical now, and high priority messages are really
4088                  * only for messages to the local MC, which don't get
4089                  * resent.
4090                  */
4091                 handlers = intf->handlers;
4092                 if (handlers) {
4093                         if (is_lan_addr(&ent->recv_msg->addr))
4094                                 ipmi_inc_stat(intf,
4095                                               retransmitted_lan_commands);
4096                         else
4097                                 ipmi_inc_stat(intf,
4098                                               retransmitted_ipmb_commands);
4099 
4100                         smi_send(intf, handlers, smi_msg, 0);
4101                 } else
4102                         ipmi_free_smi_msg(smi_msg);
4103 
4104                 spin_lock_irqsave(&intf->seq_lock, *flags);
4105         }
4106 }
4107 
4108 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4109 {
4110         struct list_head     timeouts;
4111         struct ipmi_recv_msg *msg, *msg2;
4112         unsigned long        flags;
4113         int                  i;
4114         unsigned int         waiting_msgs = 0;
4115 
4116         /*
4117          * Go through the seq table and find any messages that
4118          * have timed out, putting them in the timeouts
4119          * list.
4120          */
4121         INIT_LIST_HEAD(&timeouts);
4122         spin_lock_irqsave(&intf->seq_lock, flags);
4123         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4124                 check_msg_timeout(intf, &(intf->seq_table[i]),
4125                                   &timeouts, timeout_period, i,
4126                                   &flags, &waiting_msgs);
4127         spin_unlock_irqrestore(&intf->seq_lock, flags);
4128 
4129         list_for_each_entry_safe(msg, msg2, &timeouts, link)
4130                 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4131 
4132         /*
4133          * Maintenance mode handling.  Check the timeout
4134          * optimistically before we claim the lock.  It may
4135          * mean a timeout gets missed occasionally, but that
4136          * only means the timeout gets extended by one period
4137          * in that case.  No big deal, and it avoids the lock
4138          * most of the time.
4139          */
4140         if (intf->auto_maintenance_timeout > 0) {
4141                 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4142                 if (intf->auto_maintenance_timeout > 0) {
4143                         intf->auto_maintenance_timeout
4144                                 -= timeout_period;
4145                         if (!intf->maintenance_mode
4146                             && (intf->auto_maintenance_timeout <= 0)) {
4147                                 intf->maintenance_mode_enable = false;
4148                                 maintenance_mode_update(intf);
4149                         }
4150                 }
4151                 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4152                                        flags);
4153         }
4154 
4155         tasklet_schedule(&intf->recv_tasklet);
4156 
4157         return waiting_msgs;
4158 }
4159 
4160 static void ipmi_request_event(ipmi_smi_t intf)
4161 {
4162         /* No event requests when in maintenance mode. */
4163         if (intf->maintenance_mode_enable)
4164                 return;
4165 
4166         if (!intf->in_shutdown)
4167                 intf->handlers->request_events(intf->send_info);
4168 }
4169 
4170 static struct timer_list ipmi_timer;
4171 
4172 static atomic_t stop_operation;
4173 
4174 static void ipmi_timeout(unsigned long data)
4175 {
4176         ipmi_smi_t intf;
4177         int nt = 0;
4178 
4179         if (atomic_read(&stop_operation))
4180                 return;
4181 
4182         rcu_read_lock();
4183         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4184                 int lnt = 0;
4185 
4186                 if (atomic_read(&intf->event_waiters)) {
4187                         intf->ticks_to_req_ev--;
4188                         if (intf->ticks_to_req_ev == 0) {
4189                                 ipmi_request_event(intf);
4190                                 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4191                         }
4192                         lnt++;
4193                 }
4194 
4195                 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4196 
4197                 lnt = !!lnt;
4198                 if (lnt != intf->last_needs_timer &&
4199                                         intf->handlers->set_need_watch)
4200                         intf->handlers->set_need_watch(intf->send_info, lnt);
4201                 intf->last_needs_timer = lnt;
4202 
4203                 nt += lnt;
4204         }
4205         rcu_read_unlock();
4206 
4207         if (nt)
4208                 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4209 }
4210 
4211 static void need_waiter(ipmi_smi_t intf)
4212 {
4213         /* Racy, but worst case we start the timer twice. */
4214         if (!timer_pending(&ipmi_timer))
4215                 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4216 }
4217 
4218 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4219 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4220 
4221 static void free_smi_msg(struct ipmi_smi_msg *msg)
4222 {
4223         atomic_dec(&smi_msg_inuse_count);
4224         kfree(msg);
4225 }
4226 
4227 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4228 {
4229         struct ipmi_smi_msg *rv;
4230         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4231         if (rv) {
4232                 rv->done = free_smi_msg;
4233                 rv->user_data = NULL;
4234                 atomic_inc(&smi_msg_inuse_count);
4235         }
4236         return rv;
4237 }
4238 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4239 
4240 static void free_recv_msg(struct ipmi_recv_msg *msg)
4241 {
4242         atomic_dec(&recv_msg_inuse_count);
4243         kfree(msg);
4244 }
4245 
4246 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4247 {
4248         struct ipmi_recv_msg *rv;
4249 
4250         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4251         if (rv) {
4252                 rv->user = NULL;
4253                 rv->done = free_recv_msg;
4254                 atomic_inc(&recv_msg_inuse_count);
4255         }
4256         return rv;
4257 }
4258 
4259 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4260 {
4261         if (msg->user)
4262                 kref_put(&msg->user->refcount, free_user);
4263         msg->done(msg);
4264 }
4265 EXPORT_SYMBOL(ipmi_free_recv_msg);
4266 
4267 #ifdef CONFIG_IPMI_PANIC_EVENT
4268 
4269 static atomic_t panic_done_count = ATOMIC_INIT(0);
4270 
4271 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4272 {
4273         atomic_dec(&panic_done_count);
4274 }
4275 
4276 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4277 {
4278         atomic_dec(&panic_done_count);
4279 }
4280 
4281 /*
4282  * Inside a panic, send a message and wait for a response.
4283  */
4284 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4285                                         struct ipmi_addr     *addr,
4286                                         struct kernel_ipmi_msg *msg)
4287 {
4288         struct ipmi_smi_msg  smi_msg;
4289         struct ipmi_recv_msg recv_msg;
4290         int rv;
4291 
4292         smi_msg.done = dummy_smi_done_handler;
4293         recv_msg.done = dummy_recv_done_handler;
4294         atomic_add(2, &panic_done_count);
4295         rv = i_ipmi_request(NULL,
4296                             intf,
4297                             addr,
4298                             0,
4299                             msg,
4300                             intf,
4301                             &smi_msg,
4302                             &recv_msg,
4303                             0,
4304                             intf->channels[0].address,
4305                             intf->channels[0].lun,
4306                             0, 1); /* Don't retry, and don't wait. */
4307         if (rv)
4308                 atomic_sub(2, &panic_done_count);
4309         else if (intf->handlers->flush_messages)
4310                 intf->handlers->flush_messages(intf->send_info);
4311 
4312         while (atomic_read(&panic_done_count) != 0)
4313                 ipmi_poll(intf);
4314 }
4315 
4316 #ifdef CONFIG_IPMI_PANIC_STRING
4317 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4318 {
4319         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4320             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4321             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4322             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4323                 /* A get event receiver command, save it. */
4324                 intf->event_receiver = msg->msg.data[1];
4325                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4326         }
4327 }
4328 
4329 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4330 {
4331         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4332             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4333             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4334             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4335                 /*
4336                  * A get device id command, save if we are an event
4337                  * receiver or generator.
4338                  */
4339                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4340                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4341         }
4342 }
4343 #endif
4344 
4345 static void send_panic_events(char *str)
4346 {
4347         struct kernel_ipmi_msg            msg;
4348         ipmi_smi_t                        intf;
4349         unsigned char                     data[16];
4350         struct ipmi_system_interface_addr *si;
4351         struct ipmi_addr                  addr;
4352 
4353         si = (struct ipmi_system_interface_addr *) &addr;
4354         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4355         si->channel = IPMI_BMC_CHANNEL;
4356         si->lun = 0;
4357 
4358         /* Fill in an event telling that we have failed. */
4359         msg.netfn = 0x04; /* Sensor or Event. */
4360         msg.cmd = 2; /* Platform event command. */
4361         msg.data = data;
4362         msg.data_len = 8;
4363         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4364         data[1] = 0x03; /* This is for IPMI 1.0. */
4365         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4366         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4367         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4368 
4369         /*
4370          * Put a few breadcrumbs in.  Hopefully later we can add more things
4371          * to make the panic events more useful.
4372          */
4373         if (str) {
4374                 data[3] = str[0];
4375                 data[6] = str[1];
4376                 data[7] = str[2];
4377         }
4378 
4379         /* For every registered interface, send the event. */
4380         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4381                 if (!intf->handlers)
4382                         /* Interface is not ready. */
4383                         continue;
4384 
4385                 /* Send the event announcing the panic. */
4386                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4387         }
4388 
4389 #ifdef CONFIG_IPMI_PANIC_STRING
4390         /*
4391          * On every interface, dump a bunch of OEM event holding the
4392          * string.
4393          */
4394         if (!str)
4395                 return;
4396 
4397         /* For every registered interface, send the event. */
4398         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4399                 char                  *p = str;
4400                 struct ipmi_ipmb_addr *ipmb;
4401                 int                   j;
4402 
4403                 if (intf->intf_num == -1)
4404                         /* Interface was not ready yet. */
4405                         continue;
4406 
4407                 /*
4408                  * intf_num is used as an marker to tell if the
4409                  * interface is valid.  Thus we need a read barrier to
4410                  * make sure data fetched before checking intf_num
4411                  * won't be used.
4412                  */
4413                 smp_rmb();
4414 
4415                 /*
4416                  * First job here is to figure out where to send the
4417                  * OEM events.  There's no way in IPMI to send OEM
4418                  * events using an event send command, so we have to
4419                  * find the SEL to put them in and stick them in
4420                  * there.
4421                  */
4422 
4423                 /* Get capabilities from the get device id. */
4424                 intf->local_sel_device = 0;
4425                 intf->local_event_generator = 0;
4426                 intf->event_receiver = 0;
4427 
4428                 /* Request the device info from the local MC. */
4429                 msg.netfn = IPMI_NETFN_APP_REQUEST;
4430                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4431                 msg.data = NULL;
4432                 msg.data_len = 0;
4433                 intf->null_user_handler = device_id_fetcher;
4434                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4435 
4436                 if (intf->local_event_generator) {
4437                         /* Request the event receiver from the local MC. */
4438                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4439                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4440                         msg.data = NULL;
4441                         msg.data_len = 0;
4442                         intf->null_user_handler = event_receiver_fetcher;
4443                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4444                 }
4445                 intf->null_user_handler = NULL;
4446 
4447                 /*
4448                  * Validate the event receiver.  The low bit must not
4449                  * be 1 (it must be a valid IPMB address), it cannot
4450                  * be zero, and it must not be my address.
4451                  */
4452                 if (((intf->event_receiver & 1) == 0)
4453                     && (intf->event_receiver != 0)
4454                     && (intf->event_receiver != intf->channels[0].address)) {
4455                         /*
4456                          * The event receiver is valid, send an IPMB
4457                          * message.
4458                          */
4459                         ipmb = (struct ipmi_ipmb_addr *) &addr;
4460                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4461                         ipmb->channel = 0; /* FIXME - is this right? */
4462                         ipmb->lun = intf->event_receiver_lun;
4463                         ipmb->slave_addr = intf->event_receiver;
4464                 } else if (intf->local_sel_device) {
4465                         /*
4466                          * The event receiver was not valid (or was
4467                          * me), but I am an SEL device, just dump it
4468                          * in my SEL.
4469                          */
4470                         si = (struct ipmi_system_interface_addr *) &addr;
4471                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4472                         si->channel = IPMI_BMC_CHANNEL;
4473                         si->lun = 0;
4474                 } else
4475                         continue; /* No where to send the event. */
4476 
4477                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4478                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4479                 msg.data = data;
4480                 msg.data_len = 16;
4481 
4482                 j = 0;
4483                 while (*p) {
4484                         int size = strlen(p);
4485 
4486                         if (size > 11)
4487                                 size = 11;
4488                         data[0] = 0;
4489                         data[1] = 0;
4490                         data[2] = 0xf0; /* OEM event without timestamp. */
4491                         data[3] = intf->channels[0].address;
4492                         data[4] = j++; /* sequence # */
4493                         /*
4494                          * Always give 11 bytes, so strncpy will fill
4495                          * it with zeroes for me.
4496                          */
4497                         strncpy(data+5, p, 11);
4498                         p += size;
4499 
4500                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4501                 }
4502         }
4503 #endif /* CONFIG_IPMI_PANIC_STRING */
4504 }
4505 #endif /* CONFIG_IPMI_PANIC_EVENT */
4506 
4507 static int has_panicked;
4508 
4509 static int panic_event(struct notifier_block *this,
4510                        unsigned long         event,
4511                        void                  *ptr)
4512 {
4513         ipmi_smi_t intf;
4514 
4515         if (has_panicked)
4516                 return NOTIFY_DONE;
4517         has_panicked = 1;
4518 
4519         /* For every registered interface, set it to run to completion. */
4520         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4521                 if (!intf->handlers)
4522                         /* Interface is not ready. */
4523                         continue;
4524 
4525                 /*
4526                  * If we were interrupted while locking xmit_msgs_lock or
4527                  * waiting_rcv_msgs_lock, the corresponding list may be
4528                  * corrupted.  In this case, drop items on the list for
4529                  * the safety.
4530                  */
4531                 if (!spin_trylock(&intf->xmit_msgs_lock)) {
4532                         INIT_LIST_HEAD(&intf->xmit_msgs);
4533                         INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4534                 } else
4535                         spin_unlock(&intf->xmit_msgs_lock);
4536 
4537                 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
4538                         INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
4539                 else
4540                         spin_unlock(&intf->waiting_rcv_msgs_lock);
4541 
4542                 intf->run_to_completion = 1;
4543                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4544         }
4545 
4546 #ifdef CONFIG_IPMI_PANIC_EVENT
4547         send_panic_events(ptr);
4548 #endif
4549 
4550         return NOTIFY_DONE;
4551 }
4552 
4553 static struct notifier_block panic_block = {
4554         .notifier_call  = panic_event,
4555         .next           = NULL,
4556         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4557 };
4558 
4559 static int ipmi_init_msghandler(void)
4560 {
4561         int rv;
4562 
4563         if (initialized)
4564                 return 0;
4565 
4566         rv = driver_register(&ipmidriver.driver);
4567         if (rv) {
4568                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4569                 return rv;
4570         }
4571 
4572         printk(KERN_INFO "ipmi message handler version "
4573                IPMI_DRIVER_VERSION "\n");
4574 
4575 #ifdef CONFIG_PROC_FS
4576         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4577         if (!proc_ipmi_root) {
4578             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4579             driver_unregister(&ipmidriver.driver);
4580             return -ENOMEM;
4581         }
4582 
4583 #endif /* CONFIG_PROC_FS */
4584 
4585         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4586         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4587 
4588         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4589 
4590         initialized = 1;
4591 
4592         return 0;
4593 }
4594 
4595 static int __init ipmi_init_msghandler_mod(void)
4596 {
4597         ipmi_init_msghandler();
4598         return 0;
4599 }
4600 
4601 static void __exit cleanup_ipmi(void)
4602 {
4603         int count;
4604 
4605         if (!initialized)
4606                 return;
4607 
4608         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4609 
4610         /*
4611          * This can't be called if any interfaces exist, so no worry
4612          * about shutting down the interfaces.
4613          */
4614 
4615         /*
4616          * Tell the timer to stop, then wait for it to stop.  This
4617          * avoids problems with race conditions removing the timer
4618          * here.
4619          */
4620         atomic_inc(&stop_operation);
4621         del_timer_sync(&ipmi_timer);
4622 
4623 #ifdef CONFIG_PROC_FS
4624         proc_remove(proc_ipmi_root);
4625 #endif /* CONFIG_PROC_FS */
4626 
4627         driver_unregister(&ipmidriver.driver);
4628 
4629         initialized = 0;
4630 
4631         /* Check for buffer leaks. */
4632         count = atomic_read(&smi_msg_inuse_count);
4633         if (count != 0)
4634                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4635                        count);
4636         count = atomic_read(&recv_msg_inuse_count);
4637         if (count != 0)
4638                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4639                        count);
4640 }
4641 module_exit(cleanup_ipmi);
4642 
4643 module_init(ipmi_init_msghandler_mod);
4644 MODULE_LICENSE("GPL");
4645 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4646 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4647                    " interface.");
4648 MODULE_VERSION(IPMI_DRIVER_VERSION);
4649 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us