Version:  2.0.40 2.2.26 2.4.37 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Linux/drivers/char/ipmi/ipmi_msghandler.c

  1 /*
  2  * ipmi_msghandler.c
  3  *
  4  * Incoming and outgoing message routing for an IPMI interface.
  5  *
  6  * Author: MontaVista Software, Inc.
  7  *         Corey Minyard <minyard@mvista.com>
  8  *         source@mvista.com
  9  *
 10  * Copyright 2002 MontaVista Software Inc.
 11  *
 12  *  This program is free software; you can redistribute it and/or modify it
 13  *  under the terms of the GNU General Public License as published by the
 14  *  Free Software Foundation; either version 2 of the License, or (at your
 15  *  option) any later version.
 16  *
 17  *
 18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 28  *
 29  *  You should have received a copy of the GNU General Public License along
 30  *  with this program; if not, write to the Free Software Foundation, Inc.,
 31  *  675 Mass Ave, Cambridge, MA 02139, USA.
 32  */
 33 
 34 #include <linux/module.h>
 35 #include <linux/errno.h>
 36 #include <linux/poll.h>
 37 #include <linux/sched.h>
 38 #include <linux/seq_file.h>
 39 #include <linux/spinlock.h>
 40 #include <linux/mutex.h>
 41 #include <linux/slab.h>
 42 #include <linux/ipmi.h>
 43 #include <linux/ipmi_smi.h>
 44 #include <linux/notifier.h>
 45 #include <linux/init.h>
 46 #include <linux/proc_fs.h>
 47 #include <linux/rcupdate.h>
 48 #include <linux/interrupt.h>
 49 
 50 #define PFX "IPMI message handler: "
 51 
 52 #define IPMI_DRIVER_VERSION "39.2"
 53 
 54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
 55 static int ipmi_init_msghandler(void);
 56 static void smi_recv_tasklet(unsigned long);
 57 static void handle_new_recv_msgs(ipmi_smi_t intf);
 58 static void need_waiter(ipmi_smi_t intf);
 59 static int handle_one_recv_msg(ipmi_smi_t          intf,
 60                                struct ipmi_smi_msg *msg);
 61 
 62 static int initialized;
 63 
 64 #ifdef CONFIG_PROC_FS
 65 static struct proc_dir_entry *proc_ipmi_root;
 66 #endif /* CONFIG_PROC_FS */
 67 
 68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
 69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
 70 
 71 #define MAX_EVENTS_IN_QUEUE     25
 72 
 73 /*
 74  * Don't let a message sit in a queue forever, always time it with at lest
 75  * the max message timer.  This is in milliseconds.
 76  */
 77 #define MAX_MSG_TIMEOUT         60000
 78 
 79 /* Call every ~1000 ms. */
 80 #define IPMI_TIMEOUT_TIME       1000
 81 
 82 /* How many jiffies does it take to get to the timeout time. */
 83 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
 84 
 85 /*
 86  * Request events from the queue every second (this is the number of
 87  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
 88  * future, IPMI will add a way to know immediately if an event is in
 89  * the queue and this silliness can go away.
 90  */
 91 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
 92 
 93 /*
 94  * The main "user" data structure.
 95  */
 96 struct ipmi_user {
 97         struct list_head link;
 98 
 99         /* Set to false when the user is destroyed. */
100         bool valid;
101 
102         struct kref refcount;
103 
104         /* The upper layer that handles receive messages. */
105         struct ipmi_user_hndl *handler;
106         void             *handler_data;
107 
108         /* The interface this user is bound to. */
109         ipmi_smi_t intf;
110 
111         /* Does this interface receive IPMI events? */
112         bool gets_events;
113 };
114 
115 struct cmd_rcvr {
116         struct list_head link;
117 
118         ipmi_user_t   user;
119         unsigned char netfn;
120         unsigned char cmd;
121         unsigned int  chans;
122 
123         /*
124          * This is used to form a linked lised during mass deletion.
125          * Since this is in an RCU list, we cannot use the link above
126          * or change any data until the RCU period completes.  So we
127          * use this next variable during mass deletion so we can have
128          * a list and don't have to wait and restart the search on
129          * every individual deletion of a command.
130          */
131         struct cmd_rcvr *next;
132 };
133 
134 struct seq_table {
135         unsigned int         inuse : 1;
136         unsigned int         broadcast : 1;
137 
138         unsigned long        timeout;
139         unsigned long        orig_timeout;
140         unsigned int         retries_left;
141 
142         /*
143          * To verify on an incoming send message response that this is
144          * the message that the response is for, we keep a sequence id
145          * and increment it every time we send a message.
146          */
147         long                 seqid;
148 
149         /*
150          * This is held so we can properly respond to the message on a
151          * timeout, and it is used to hold the temporary data for
152          * retransmission, too.
153          */
154         struct ipmi_recv_msg *recv_msg;
155 };
156 
157 /*
158  * Store the information in a msgid (long) to allow us to find a
159  * sequence table entry from the msgid.
160  */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) \
162         ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
163 
164 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
165         do {                                                            \
166                 seq = (((msgid) >> 26) & 0x3f);                         \
167                 seqid = ((msgid) & 0x3ffffff);                          \
168         } while (0)
169 
170 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
171 
172 struct ipmi_channel {
173         unsigned char medium;
174         unsigned char protocol;
175 
176         /*
177          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
178          * but may be changed by the user.
179          */
180         unsigned char address;
181 
182         /*
183          * My LUN.  This should generally stay the SMS LUN, but just in
184          * case...
185          */
186         unsigned char lun;
187 };
188 
189 #ifdef CONFIG_PROC_FS
190 struct ipmi_proc_entry {
191         char                   *name;
192         struct ipmi_proc_entry *next;
193 };
194 #endif
195 
196 struct bmc_device {
197         struct platform_device pdev;
198         struct ipmi_device_id  id;
199         unsigned char          guid[16];
200         int                    guid_set;
201         char                   name[16];
202         struct kref            usecount;
203 };
204 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
205 
206 /*
207  * Various statistics for IPMI, these index stats[] in the ipmi_smi
208  * structure.
209  */
210 enum ipmi_stat_indexes {
211         /* Commands we got from the user that were invalid. */
212         IPMI_STAT_sent_invalid_commands = 0,
213 
214         /* Commands we sent to the MC. */
215         IPMI_STAT_sent_local_commands,
216 
217         /* Responses from the MC that were delivered to a user. */
218         IPMI_STAT_handled_local_responses,
219 
220         /* Responses from the MC that were not delivered to a user. */
221         IPMI_STAT_unhandled_local_responses,
222 
223         /* Commands we sent out to the IPMB bus. */
224         IPMI_STAT_sent_ipmb_commands,
225 
226         /* Commands sent on the IPMB that had errors on the SEND CMD */
227         IPMI_STAT_sent_ipmb_command_errs,
228 
229         /* Each retransmit increments this count. */
230         IPMI_STAT_retransmitted_ipmb_commands,
231 
232         /*
233          * When a message times out (runs out of retransmits) this is
234          * incremented.
235          */
236         IPMI_STAT_timed_out_ipmb_commands,
237 
238         /*
239          * This is like above, but for broadcasts.  Broadcasts are
240          * *not* included in the above count (they are expected to
241          * time out).
242          */
243         IPMI_STAT_timed_out_ipmb_broadcasts,
244 
245         /* Responses I have sent to the IPMB bus. */
246         IPMI_STAT_sent_ipmb_responses,
247 
248         /* The response was delivered to the user. */
249         IPMI_STAT_handled_ipmb_responses,
250 
251         /* The response had invalid data in it. */
252         IPMI_STAT_invalid_ipmb_responses,
253 
254         /* The response didn't have anyone waiting for it. */
255         IPMI_STAT_unhandled_ipmb_responses,
256 
257         /* Commands we sent out to the IPMB bus. */
258         IPMI_STAT_sent_lan_commands,
259 
260         /* Commands sent on the IPMB that had errors on the SEND CMD */
261         IPMI_STAT_sent_lan_command_errs,
262 
263         /* Each retransmit increments this count. */
264         IPMI_STAT_retransmitted_lan_commands,
265 
266         /*
267          * When a message times out (runs out of retransmits) this is
268          * incremented.
269          */
270         IPMI_STAT_timed_out_lan_commands,
271 
272         /* Responses I have sent to the IPMB bus. */
273         IPMI_STAT_sent_lan_responses,
274 
275         /* The response was delivered to the user. */
276         IPMI_STAT_handled_lan_responses,
277 
278         /* The response had invalid data in it. */
279         IPMI_STAT_invalid_lan_responses,
280 
281         /* The response didn't have anyone waiting for it. */
282         IPMI_STAT_unhandled_lan_responses,
283 
284         /* The command was delivered to the user. */
285         IPMI_STAT_handled_commands,
286 
287         /* The command had invalid data in it. */
288         IPMI_STAT_invalid_commands,
289 
290         /* The command didn't have anyone waiting for it. */
291         IPMI_STAT_unhandled_commands,
292 
293         /* Invalid data in an event. */
294         IPMI_STAT_invalid_events,
295 
296         /* Events that were received with the proper format. */
297         IPMI_STAT_events,
298 
299         /* Retransmissions on IPMB that failed. */
300         IPMI_STAT_dropped_rexmit_ipmb_commands,
301 
302         /* Retransmissions on LAN that failed. */
303         IPMI_STAT_dropped_rexmit_lan_commands,
304 
305         /* This *must* remain last, add new values above this. */
306         IPMI_NUM_STATS
307 };
308 
309 
310 #define IPMI_IPMB_NUM_SEQ       64
311 #define IPMI_MAX_CHANNELS       16
312 struct ipmi_smi {
313         /* What interface number are we? */
314         int intf_num;
315 
316         struct kref refcount;
317 
318         /* Set when the interface is being unregistered. */
319         bool in_shutdown;
320 
321         /* Used for a list of interfaces. */
322         struct list_head link;
323 
324         /*
325          * The list of upper layers that are using me.  seq_lock
326          * protects this.
327          */
328         struct list_head users;
329 
330         /* Information to supply to users. */
331         unsigned char ipmi_version_major;
332         unsigned char ipmi_version_minor;
333 
334         /* Used for wake ups at startup. */
335         wait_queue_head_t waitq;
336 
337         struct bmc_device *bmc;
338         char *my_dev_name;
339 
340         /*
341          * This is the lower-layer's sender routine.  Note that you
342          * must either be holding the ipmi_interfaces_mutex or be in
343          * an umpreemptible region to use this.  You must fetch the
344          * value into a local variable and make sure it is not NULL.
345          */
346         const struct ipmi_smi_handlers *handlers;
347         void                     *send_info;
348 
349 #ifdef CONFIG_PROC_FS
350         /* A list of proc entries for this interface. */
351         struct mutex           proc_entry_lock;
352         struct ipmi_proc_entry *proc_entries;
353 #endif
354 
355         /* Driver-model device for the system interface. */
356         struct device          *si_dev;
357 
358         /*
359          * A table of sequence numbers for this interface.  We use the
360          * sequence numbers for IPMB messages that go out of the
361          * interface to match them up with their responses.  A routine
362          * is called periodically to time the items in this list.
363          */
364         spinlock_t       seq_lock;
365         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
366         int curr_seq;
367 
368         /*
369          * Messages queued for delivery.  If delivery fails (out of memory
370          * for instance), They will stay in here to be processed later in a
371          * periodic timer interrupt.  The tasklet is for handling received
372          * messages directly from the handler.
373          */
374         spinlock_t       waiting_rcv_msgs_lock;
375         struct list_head waiting_rcv_msgs;
376         atomic_t         watchdog_pretimeouts_to_deliver;
377         struct tasklet_struct recv_tasklet;
378 
379         spinlock_t             xmit_msgs_lock;
380         struct list_head       xmit_msgs;
381         struct ipmi_smi_msg    *curr_msg;
382         struct list_head       hp_xmit_msgs;
383 
384         /*
385          * The list of command receivers that are registered for commands
386          * on this interface.
387          */
388         struct mutex     cmd_rcvrs_mutex;
389         struct list_head cmd_rcvrs;
390 
391         /*
392          * Events that were queues because no one was there to receive
393          * them.
394          */
395         spinlock_t       events_lock; /* For dealing with event stuff. */
396         struct list_head waiting_events;
397         unsigned int     waiting_events_count; /* How many events in queue? */
398         char             delivering_events;
399         char             event_msg_printed;
400         atomic_t         event_waiters;
401         unsigned int     ticks_to_req_ev;
402         int              last_needs_timer;
403 
404         /*
405          * The event receiver for my BMC, only really used at panic
406          * shutdown as a place to store this.
407          */
408         unsigned char event_receiver;
409         unsigned char event_receiver_lun;
410         unsigned char local_sel_device;
411         unsigned char local_event_generator;
412 
413         /* For handling of maintenance mode. */
414         int maintenance_mode;
415         bool maintenance_mode_enable;
416         int auto_maintenance_timeout;
417         spinlock_t maintenance_mode_lock; /* Used in a timer... */
418 
419         /*
420          * A cheap hack, if this is non-null and a message to an
421          * interface comes in with a NULL user, call this routine with
422          * it.  Note that the message will still be freed by the
423          * caller.  This only works on the system interface.
424          */
425         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
426 
427         /*
428          * When we are scanning the channels for an SMI, this will
429          * tell which channel we are scanning.
430          */
431         int curr_channel;
432 
433         /* Channel information */
434         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
435 
436         /* Proc FS stuff. */
437         struct proc_dir_entry *proc_dir;
438         char                  proc_dir_name[10];
439 
440         atomic_t stats[IPMI_NUM_STATS];
441 
442         /*
443          * run_to_completion duplicate of smb_info, smi_info
444          * and ipmi_serial_info structures. Used to decrease numbers of
445          * parameters passed by "low" level IPMI code.
446          */
447         int run_to_completion;
448 };
449 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
450 
451 /**
452  * The driver model view of the IPMI messaging driver.
453  */
454 static struct platform_driver ipmidriver = {
455         .driver = {
456                 .name = "ipmi",
457                 .bus = &platform_bus_type
458         }
459 };
460 static DEFINE_MUTEX(ipmidriver_mutex);
461 
462 static LIST_HEAD(ipmi_interfaces);
463 static DEFINE_MUTEX(ipmi_interfaces_mutex);
464 
465 /*
466  * List of watchers that want to know when smi's are added and deleted.
467  */
468 static LIST_HEAD(smi_watchers);
469 static DEFINE_MUTEX(smi_watchers_mutex);
470 
471 #define ipmi_inc_stat(intf, stat) \
472         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
473 #define ipmi_get_stat(intf, stat) \
474         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
475 
476 static const char * const addr_src_to_str[] = {
477         "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
478         "device-tree"
479 };
480 
481 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
482 {
483         if (src >= SI_LAST)
484                 src = 0; /* Invalid */
485         return addr_src_to_str[src];
486 }
487 EXPORT_SYMBOL(ipmi_addr_src_to_str);
488 
489 static int is_lan_addr(struct ipmi_addr *addr)
490 {
491         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
492 }
493 
494 static int is_ipmb_addr(struct ipmi_addr *addr)
495 {
496         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
497 }
498 
499 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
500 {
501         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
502 }
503 
504 static void free_recv_msg_list(struct list_head *q)
505 {
506         struct ipmi_recv_msg *msg, *msg2;
507 
508         list_for_each_entry_safe(msg, msg2, q, link) {
509                 list_del(&msg->link);
510                 ipmi_free_recv_msg(msg);
511         }
512 }
513 
514 static void free_smi_msg_list(struct list_head *q)
515 {
516         struct ipmi_smi_msg *msg, *msg2;
517 
518         list_for_each_entry_safe(msg, msg2, q, link) {
519                 list_del(&msg->link);
520                 ipmi_free_smi_msg(msg);
521         }
522 }
523 
524 static void clean_up_interface_data(ipmi_smi_t intf)
525 {
526         int              i;
527         struct cmd_rcvr  *rcvr, *rcvr2;
528         struct list_head list;
529 
530         tasklet_kill(&intf->recv_tasklet);
531 
532         free_smi_msg_list(&intf->waiting_rcv_msgs);
533         free_recv_msg_list(&intf->waiting_events);
534 
535         /*
536          * Wholesale remove all the entries from the list in the
537          * interface and wait for RCU to know that none are in use.
538          */
539         mutex_lock(&intf->cmd_rcvrs_mutex);
540         INIT_LIST_HEAD(&list);
541         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
542         mutex_unlock(&intf->cmd_rcvrs_mutex);
543 
544         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
545                 kfree(rcvr);
546 
547         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
548                 if ((intf->seq_table[i].inuse)
549                                         && (intf->seq_table[i].recv_msg))
550                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
551         }
552 }
553 
554 static void intf_free(struct kref *ref)
555 {
556         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
557 
558         clean_up_interface_data(intf);
559         kfree(intf);
560 }
561 
562 struct watcher_entry {
563         int              intf_num;
564         ipmi_smi_t       intf;
565         struct list_head link;
566 };
567 
568 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
569 {
570         ipmi_smi_t intf;
571         LIST_HEAD(to_deliver);
572         struct watcher_entry *e, *e2;
573 
574         mutex_lock(&smi_watchers_mutex);
575 
576         mutex_lock(&ipmi_interfaces_mutex);
577 
578         /* Build a list of things to deliver. */
579         list_for_each_entry(intf, &ipmi_interfaces, link) {
580                 if (intf->intf_num == -1)
581                         continue;
582                 e = kmalloc(sizeof(*e), GFP_KERNEL);
583                 if (!e)
584                         goto out_err;
585                 kref_get(&intf->refcount);
586                 e->intf = intf;
587                 e->intf_num = intf->intf_num;
588                 list_add_tail(&e->link, &to_deliver);
589         }
590 
591         /* We will succeed, so add it to the list. */
592         list_add(&watcher->link, &smi_watchers);
593 
594         mutex_unlock(&ipmi_interfaces_mutex);
595 
596         list_for_each_entry_safe(e, e2, &to_deliver, link) {
597                 list_del(&e->link);
598                 watcher->new_smi(e->intf_num, e->intf->si_dev);
599                 kref_put(&e->intf->refcount, intf_free);
600                 kfree(e);
601         }
602 
603         mutex_unlock(&smi_watchers_mutex);
604 
605         return 0;
606 
607  out_err:
608         mutex_unlock(&ipmi_interfaces_mutex);
609         mutex_unlock(&smi_watchers_mutex);
610         list_for_each_entry_safe(e, e2, &to_deliver, link) {
611                 list_del(&e->link);
612                 kref_put(&e->intf->refcount, intf_free);
613                 kfree(e);
614         }
615         return -ENOMEM;
616 }
617 EXPORT_SYMBOL(ipmi_smi_watcher_register);
618 
619 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
620 {
621         mutex_lock(&smi_watchers_mutex);
622         list_del(&(watcher->link));
623         mutex_unlock(&smi_watchers_mutex);
624         return 0;
625 }
626 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
627 
628 /*
629  * Must be called with smi_watchers_mutex held.
630  */
631 static void
632 call_smi_watchers(int i, struct device *dev)
633 {
634         struct ipmi_smi_watcher *w;
635 
636         list_for_each_entry(w, &smi_watchers, link) {
637                 if (try_module_get(w->owner)) {
638                         w->new_smi(i, dev);
639                         module_put(w->owner);
640                 }
641         }
642 }
643 
644 static int
645 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
646 {
647         if (addr1->addr_type != addr2->addr_type)
648                 return 0;
649 
650         if (addr1->channel != addr2->channel)
651                 return 0;
652 
653         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
654                 struct ipmi_system_interface_addr *smi_addr1
655                     = (struct ipmi_system_interface_addr *) addr1;
656                 struct ipmi_system_interface_addr *smi_addr2
657                     = (struct ipmi_system_interface_addr *) addr2;
658                 return (smi_addr1->lun == smi_addr2->lun);
659         }
660 
661         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
662                 struct ipmi_ipmb_addr *ipmb_addr1
663                     = (struct ipmi_ipmb_addr *) addr1;
664                 struct ipmi_ipmb_addr *ipmb_addr2
665                     = (struct ipmi_ipmb_addr *) addr2;
666 
667                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
668                         && (ipmb_addr1->lun == ipmb_addr2->lun));
669         }
670 
671         if (is_lan_addr(addr1)) {
672                 struct ipmi_lan_addr *lan_addr1
673                         = (struct ipmi_lan_addr *) addr1;
674                 struct ipmi_lan_addr *lan_addr2
675                     = (struct ipmi_lan_addr *) addr2;
676 
677                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
678                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
679                         && (lan_addr1->session_handle
680                             == lan_addr2->session_handle)
681                         && (lan_addr1->lun == lan_addr2->lun));
682         }
683 
684         return 1;
685 }
686 
687 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
688 {
689         if (len < sizeof(struct ipmi_system_interface_addr))
690                 return -EINVAL;
691 
692         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
693                 if (addr->channel != IPMI_BMC_CHANNEL)
694                         return -EINVAL;
695                 return 0;
696         }
697 
698         if ((addr->channel == IPMI_BMC_CHANNEL)
699             || (addr->channel >= IPMI_MAX_CHANNELS)
700             || (addr->channel < 0))
701                 return -EINVAL;
702 
703         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
704                 if (len < sizeof(struct ipmi_ipmb_addr))
705                         return -EINVAL;
706                 return 0;
707         }
708 
709         if (is_lan_addr(addr)) {
710                 if (len < sizeof(struct ipmi_lan_addr))
711                         return -EINVAL;
712                 return 0;
713         }
714 
715         return -EINVAL;
716 }
717 EXPORT_SYMBOL(ipmi_validate_addr);
718 
719 unsigned int ipmi_addr_length(int addr_type)
720 {
721         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
722                 return sizeof(struct ipmi_system_interface_addr);
723 
724         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
725                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
726                 return sizeof(struct ipmi_ipmb_addr);
727 
728         if (addr_type == IPMI_LAN_ADDR_TYPE)
729                 return sizeof(struct ipmi_lan_addr);
730 
731         return 0;
732 }
733 EXPORT_SYMBOL(ipmi_addr_length);
734 
735 static void deliver_response(struct ipmi_recv_msg *msg)
736 {
737         if (!msg->user) {
738                 ipmi_smi_t    intf = msg->user_msg_data;
739 
740                 /* Special handling for NULL users. */
741                 if (intf->null_user_handler) {
742                         intf->null_user_handler(intf, msg);
743                         ipmi_inc_stat(intf, handled_local_responses);
744                 } else {
745                         /* No handler, so give up. */
746                         ipmi_inc_stat(intf, unhandled_local_responses);
747                 }
748                 ipmi_free_recv_msg(msg);
749         } else if (!oops_in_progress) {
750                 /*
751                  * If we are running in the panic context, calling the
752                  * receive handler doesn't much meaning and has a deadlock
753                  * risk.  At this moment, simply skip it in that case.
754                  */
755 
756                 ipmi_user_t user = msg->user;
757                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
758         }
759 }
760 
761 static void
762 deliver_err_response(struct ipmi_recv_msg *msg, int err)
763 {
764         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
765         msg->msg_data[0] = err;
766         msg->msg.netfn |= 1; /* Convert to a response. */
767         msg->msg.data_len = 1;
768         msg->msg.data = msg->msg_data;
769         deliver_response(msg);
770 }
771 
772 /*
773  * Find the next sequence number not being used and add the given
774  * message with the given timeout to the sequence table.  This must be
775  * called with the interface's seq_lock held.
776  */
777 static int intf_next_seq(ipmi_smi_t           intf,
778                          struct ipmi_recv_msg *recv_msg,
779                          unsigned long        timeout,
780                          int                  retries,
781                          int                  broadcast,
782                          unsigned char        *seq,
783                          long                 *seqid)
784 {
785         int          rv = 0;
786         unsigned int i;
787 
788         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
789                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
790                 if (!intf->seq_table[i].inuse)
791                         break;
792         }
793 
794         if (!intf->seq_table[i].inuse) {
795                 intf->seq_table[i].recv_msg = recv_msg;
796 
797                 /*
798                  * Start with the maximum timeout, when the send response
799                  * comes in we will start the real timer.
800                  */
801                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
802                 intf->seq_table[i].orig_timeout = timeout;
803                 intf->seq_table[i].retries_left = retries;
804                 intf->seq_table[i].broadcast = broadcast;
805                 intf->seq_table[i].inuse = 1;
806                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
807                 *seq = i;
808                 *seqid = intf->seq_table[i].seqid;
809                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
810                 need_waiter(intf);
811         } else {
812                 rv = -EAGAIN;
813         }
814 
815         return rv;
816 }
817 
818 /*
819  * Return the receive message for the given sequence number and
820  * release the sequence number so it can be reused.  Some other data
821  * is passed in to be sure the message matches up correctly (to help
822  * guard against message coming in after their timeout and the
823  * sequence number being reused).
824  */
825 static int intf_find_seq(ipmi_smi_t           intf,
826                          unsigned char        seq,
827                          short                channel,
828                          unsigned char        cmd,
829                          unsigned char        netfn,
830                          struct ipmi_addr     *addr,
831                          struct ipmi_recv_msg **recv_msg)
832 {
833         int           rv = -ENODEV;
834         unsigned long flags;
835 
836         if (seq >= IPMI_IPMB_NUM_SEQ)
837                 return -EINVAL;
838 
839         spin_lock_irqsave(&(intf->seq_lock), flags);
840         if (intf->seq_table[seq].inuse) {
841                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
842 
843                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
844                                 && (msg->msg.netfn == netfn)
845                                 && (ipmi_addr_equal(addr, &(msg->addr)))) {
846                         *recv_msg = msg;
847                         intf->seq_table[seq].inuse = 0;
848                         rv = 0;
849                 }
850         }
851         spin_unlock_irqrestore(&(intf->seq_lock), flags);
852 
853         return rv;
854 }
855 
856 
857 /* Start the timer for a specific sequence table entry. */
858 static int intf_start_seq_timer(ipmi_smi_t intf,
859                                 long       msgid)
860 {
861         int           rv = -ENODEV;
862         unsigned long flags;
863         unsigned char seq;
864         unsigned long seqid;
865 
866 
867         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
868 
869         spin_lock_irqsave(&(intf->seq_lock), flags);
870         /*
871          * We do this verification because the user can be deleted
872          * while a message is outstanding.
873          */
874         if ((intf->seq_table[seq].inuse)
875                                 && (intf->seq_table[seq].seqid == seqid)) {
876                 struct seq_table *ent = &(intf->seq_table[seq]);
877                 ent->timeout = ent->orig_timeout;
878                 rv = 0;
879         }
880         spin_unlock_irqrestore(&(intf->seq_lock), flags);
881 
882         return rv;
883 }
884 
885 /* Got an error for the send message for a specific sequence number. */
886 static int intf_err_seq(ipmi_smi_t   intf,
887                         long         msgid,
888                         unsigned int err)
889 {
890         int                  rv = -ENODEV;
891         unsigned long        flags;
892         unsigned char        seq;
893         unsigned long        seqid;
894         struct ipmi_recv_msg *msg = NULL;
895 
896 
897         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
898 
899         spin_lock_irqsave(&(intf->seq_lock), flags);
900         /*
901          * We do this verification because the user can be deleted
902          * while a message is outstanding.
903          */
904         if ((intf->seq_table[seq].inuse)
905                                 && (intf->seq_table[seq].seqid == seqid)) {
906                 struct seq_table *ent = &(intf->seq_table[seq]);
907 
908                 ent->inuse = 0;
909                 msg = ent->recv_msg;
910                 rv = 0;
911         }
912         spin_unlock_irqrestore(&(intf->seq_lock), flags);
913 
914         if (msg)
915                 deliver_err_response(msg, err);
916 
917         return rv;
918 }
919 
920 
921 int ipmi_create_user(unsigned int          if_num,
922                      struct ipmi_user_hndl *handler,
923                      void                  *handler_data,
924                      ipmi_user_t           *user)
925 {
926         unsigned long flags;
927         ipmi_user_t   new_user;
928         int           rv = 0;
929         ipmi_smi_t    intf;
930 
931         /*
932          * There is no module usecount here, because it's not
933          * required.  Since this can only be used by and called from
934          * other modules, they will implicitly use this module, and
935          * thus this can't be removed unless the other modules are
936          * removed.
937          */
938 
939         if (handler == NULL)
940                 return -EINVAL;
941 
942         /*
943          * Make sure the driver is actually initialized, this handles
944          * problems with initialization order.
945          */
946         if (!initialized) {
947                 rv = ipmi_init_msghandler();
948                 if (rv)
949                         return rv;
950 
951                 /*
952                  * The init code doesn't return an error if it was turned
953                  * off, but it won't initialize.  Check that.
954                  */
955                 if (!initialized)
956                         return -ENODEV;
957         }
958 
959         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
960         if (!new_user)
961                 return -ENOMEM;
962 
963         mutex_lock(&ipmi_interfaces_mutex);
964         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
965                 if (intf->intf_num == if_num)
966                         goto found;
967         }
968         /* Not found, return an error */
969         rv = -EINVAL;
970         goto out_kfree;
971 
972  found:
973         /* Note that each existing user holds a refcount to the interface. */
974         kref_get(&intf->refcount);
975 
976         kref_init(&new_user->refcount);
977         new_user->handler = handler;
978         new_user->handler_data = handler_data;
979         new_user->intf = intf;
980         new_user->gets_events = false;
981 
982         if (!try_module_get(intf->handlers->owner)) {
983                 rv = -ENODEV;
984                 goto out_kref;
985         }
986 
987         if (intf->handlers->inc_usecount) {
988                 rv = intf->handlers->inc_usecount(intf->send_info);
989                 if (rv) {
990                         module_put(intf->handlers->owner);
991                         goto out_kref;
992                 }
993         }
994 
995         /*
996          * Hold the lock so intf->handlers is guaranteed to be good
997          * until now
998          */
999         mutex_unlock(&ipmi_interfaces_mutex);
1000 
1001         new_user->valid = true;
1002         spin_lock_irqsave(&intf->seq_lock, flags);
1003         list_add_rcu(&new_user->link, &intf->users);
1004         spin_unlock_irqrestore(&intf->seq_lock, flags);
1005         if (handler->ipmi_watchdog_pretimeout) {
1006                 /* User wants pretimeouts, so make sure to watch for them. */
1007                 if (atomic_inc_return(&intf->event_waiters) == 1)
1008                         need_waiter(intf);
1009         }
1010         *user = new_user;
1011         return 0;
1012 
1013 out_kref:
1014         kref_put(&intf->refcount, intf_free);
1015 out_kfree:
1016         mutex_unlock(&ipmi_interfaces_mutex);
1017         kfree(new_user);
1018         return rv;
1019 }
1020 EXPORT_SYMBOL(ipmi_create_user);
1021 
1022 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1023 {
1024         int           rv = 0;
1025         ipmi_smi_t    intf;
1026         const struct ipmi_smi_handlers *handlers;
1027 
1028         mutex_lock(&ipmi_interfaces_mutex);
1029         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1030                 if (intf->intf_num == if_num)
1031                         goto found;
1032         }
1033         /* Not found, return an error */
1034         rv = -EINVAL;
1035         mutex_unlock(&ipmi_interfaces_mutex);
1036         return rv;
1037 
1038 found:
1039         handlers = intf->handlers;
1040         rv = -ENOSYS;
1041         if (handlers->get_smi_info)
1042                 rv = handlers->get_smi_info(intf->send_info, data);
1043         mutex_unlock(&ipmi_interfaces_mutex);
1044 
1045         return rv;
1046 }
1047 EXPORT_SYMBOL(ipmi_get_smi_info);
1048 
1049 static void free_user(struct kref *ref)
1050 {
1051         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1052         kfree(user);
1053 }
1054 
1055 int ipmi_destroy_user(ipmi_user_t user)
1056 {
1057         ipmi_smi_t       intf = user->intf;
1058         int              i;
1059         unsigned long    flags;
1060         struct cmd_rcvr  *rcvr;
1061         struct cmd_rcvr  *rcvrs = NULL;
1062 
1063         user->valid = false;
1064 
1065         if (user->handler->ipmi_watchdog_pretimeout)
1066                 atomic_dec(&intf->event_waiters);
1067 
1068         if (user->gets_events)
1069                 atomic_dec(&intf->event_waiters);
1070 
1071         /* Remove the user from the interface's sequence table. */
1072         spin_lock_irqsave(&intf->seq_lock, flags);
1073         list_del_rcu(&user->link);
1074 
1075         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1076                 if (intf->seq_table[i].inuse
1077                     && (intf->seq_table[i].recv_msg->user == user)) {
1078                         intf->seq_table[i].inuse = 0;
1079                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1080                 }
1081         }
1082         spin_unlock_irqrestore(&intf->seq_lock, flags);
1083 
1084         /*
1085          * Remove the user from the command receiver's table.  First
1086          * we build a list of everything (not using the standard link,
1087          * since other things may be using it till we do
1088          * synchronize_rcu()) then free everything in that list.
1089          */
1090         mutex_lock(&intf->cmd_rcvrs_mutex);
1091         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1092                 if (rcvr->user == user) {
1093                         list_del_rcu(&rcvr->link);
1094                         rcvr->next = rcvrs;
1095                         rcvrs = rcvr;
1096                 }
1097         }
1098         mutex_unlock(&intf->cmd_rcvrs_mutex);
1099         synchronize_rcu();
1100         while (rcvrs) {
1101                 rcvr = rcvrs;
1102                 rcvrs = rcvr->next;
1103                 kfree(rcvr);
1104         }
1105 
1106         mutex_lock(&ipmi_interfaces_mutex);
1107         if (intf->handlers) {
1108                 module_put(intf->handlers->owner);
1109                 if (intf->handlers->dec_usecount)
1110                         intf->handlers->dec_usecount(intf->send_info);
1111         }
1112         mutex_unlock(&ipmi_interfaces_mutex);
1113 
1114         kref_put(&intf->refcount, intf_free);
1115 
1116         kref_put(&user->refcount, free_user);
1117 
1118         return 0;
1119 }
1120 EXPORT_SYMBOL(ipmi_destroy_user);
1121 
1122 void ipmi_get_version(ipmi_user_t   user,
1123                       unsigned char *major,
1124                       unsigned char *minor)
1125 {
1126         *major = user->intf->ipmi_version_major;
1127         *minor = user->intf->ipmi_version_minor;
1128 }
1129 EXPORT_SYMBOL(ipmi_get_version);
1130 
1131 int ipmi_set_my_address(ipmi_user_t   user,
1132                         unsigned int  channel,
1133                         unsigned char address)
1134 {
1135         if (channel >= IPMI_MAX_CHANNELS)
1136                 return -EINVAL;
1137         user->intf->channels[channel].address = address;
1138         return 0;
1139 }
1140 EXPORT_SYMBOL(ipmi_set_my_address);
1141 
1142 int ipmi_get_my_address(ipmi_user_t   user,
1143                         unsigned int  channel,
1144                         unsigned char *address)
1145 {
1146         if (channel >= IPMI_MAX_CHANNELS)
1147                 return -EINVAL;
1148         *address = user->intf->channels[channel].address;
1149         return 0;
1150 }
1151 EXPORT_SYMBOL(ipmi_get_my_address);
1152 
1153 int ipmi_set_my_LUN(ipmi_user_t   user,
1154                     unsigned int  channel,
1155                     unsigned char LUN)
1156 {
1157         if (channel >= IPMI_MAX_CHANNELS)
1158                 return -EINVAL;
1159         user->intf->channels[channel].lun = LUN & 0x3;
1160         return 0;
1161 }
1162 EXPORT_SYMBOL(ipmi_set_my_LUN);
1163 
1164 int ipmi_get_my_LUN(ipmi_user_t   user,
1165                     unsigned int  channel,
1166                     unsigned char *address)
1167 {
1168         if (channel >= IPMI_MAX_CHANNELS)
1169                 return -EINVAL;
1170         *address = user->intf->channels[channel].lun;
1171         return 0;
1172 }
1173 EXPORT_SYMBOL(ipmi_get_my_LUN);
1174 
1175 int ipmi_get_maintenance_mode(ipmi_user_t user)
1176 {
1177         int           mode;
1178         unsigned long flags;
1179 
1180         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1181         mode = user->intf->maintenance_mode;
1182         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1183 
1184         return mode;
1185 }
1186 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1187 
1188 static void maintenance_mode_update(ipmi_smi_t intf)
1189 {
1190         if (intf->handlers->set_maintenance_mode)
1191                 intf->handlers->set_maintenance_mode(
1192                         intf->send_info, intf->maintenance_mode_enable);
1193 }
1194 
1195 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1196 {
1197         int           rv = 0;
1198         unsigned long flags;
1199         ipmi_smi_t    intf = user->intf;
1200 
1201         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1202         if (intf->maintenance_mode != mode) {
1203                 switch (mode) {
1204                 case IPMI_MAINTENANCE_MODE_AUTO:
1205                         intf->maintenance_mode_enable
1206                                 = (intf->auto_maintenance_timeout > 0);
1207                         break;
1208 
1209                 case IPMI_MAINTENANCE_MODE_OFF:
1210                         intf->maintenance_mode_enable = false;
1211                         break;
1212 
1213                 case IPMI_MAINTENANCE_MODE_ON:
1214                         intf->maintenance_mode_enable = true;
1215                         break;
1216 
1217                 default:
1218                         rv = -EINVAL;
1219                         goto out_unlock;
1220                 }
1221                 intf->maintenance_mode = mode;
1222 
1223                 maintenance_mode_update(intf);
1224         }
1225  out_unlock:
1226         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1227 
1228         return rv;
1229 }
1230 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1231 
1232 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1233 {
1234         unsigned long        flags;
1235         ipmi_smi_t           intf = user->intf;
1236         struct ipmi_recv_msg *msg, *msg2;
1237         struct list_head     msgs;
1238 
1239         INIT_LIST_HEAD(&msgs);
1240 
1241         spin_lock_irqsave(&intf->events_lock, flags);
1242         if (user->gets_events == val)
1243                 goto out;
1244 
1245         user->gets_events = val;
1246 
1247         if (val) {
1248                 if (atomic_inc_return(&intf->event_waiters) == 1)
1249                         need_waiter(intf);
1250         } else {
1251                 atomic_dec(&intf->event_waiters);
1252         }
1253 
1254         if (intf->delivering_events)
1255                 /*
1256                  * Another thread is delivering events for this, so
1257                  * let it handle any new events.
1258                  */
1259                 goto out;
1260 
1261         /* Deliver any queued events. */
1262         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1263                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1264                         list_move_tail(&msg->link, &msgs);
1265                 intf->waiting_events_count = 0;
1266                 if (intf->event_msg_printed) {
1267                         printk(KERN_WARNING PFX "Event queue no longer"
1268                                " full\n");
1269                         intf->event_msg_printed = 0;
1270                 }
1271 
1272                 intf->delivering_events = 1;
1273                 spin_unlock_irqrestore(&intf->events_lock, flags);
1274 
1275                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1276                         msg->user = user;
1277                         kref_get(&user->refcount);
1278                         deliver_response(msg);
1279                 }
1280 
1281                 spin_lock_irqsave(&intf->events_lock, flags);
1282                 intf->delivering_events = 0;
1283         }
1284 
1285  out:
1286         spin_unlock_irqrestore(&intf->events_lock, flags);
1287 
1288         return 0;
1289 }
1290 EXPORT_SYMBOL(ipmi_set_gets_events);
1291 
1292 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1293                                       unsigned char netfn,
1294                                       unsigned char cmd,
1295                                       unsigned char chan)
1296 {
1297         struct cmd_rcvr *rcvr;
1298 
1299         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1300                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1301                                         && (rcvr->chans & (1 << chan)))
1302                         return rcvr;
1303         }
1304         return NULL;
1305 }
1306 
1307 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1308                                  unsigned char netfn,
1309                                  unsigned char cmd,
1310                                  unsigned int  chans)
1311 {
1312         struct cmd_rcvr *rcvr;
1313 
1314         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1315                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1316                                         && (rcvr->chans & chans))
1317                         return 0;
1318         }
1319         return 1;
1320 }
1321 
1322 int ipmi_register_for_cmd(ipmi_user_t   user,
1323                           unsigned char netfn,
1324                           unsigned char cmd,
1325                           unsigned int  chans)
1326 {
1327         ipmi_smi_t      intf = user->intf;
1328         struct cmd_rcvr *rcvr;
1329         int             rv = 0;
1330 
1331 
1332         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1333         if (!rcvr)
1334                 return -ENOMEM;
1335         rcvr->cmd = cmd;
1336         rcvr->netfn = netfn;
1337         rcvr->chans = chans;
1338         rcvr->user = user;
1339 
1340         mutex_lock(&intf->cmd_rcvrs_mutex);
1341         /* Make sure the command/netfn is not already registered. */
1342         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1343                 rv = -EBUSY;
1344                 goto out_unlock;
1345         }
1346 
1347         if (atomic_inc_return(&intf->event_waiters) == 1)
1348                 need_waiter(intf);
1349 
1350         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1351 
1352  out_unlock:
1353         mutex_unlock(&intf->cmd_rcvrs_mutex);
1354         if (rv)
1355                 kfree(rcvr);
1356 
1357         return rv;
1358 }
1359 EXPORT_SYMBOL(ipmi_register_for_cmd);
1360 
1361 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1362                             unsigned char netfn,
1363                             unsigned char cmd,
1364                             unsigned int  chans)
1365 {
1366         ipmi_smi_t      intf = user->intf;
1367         struct cmd_rcvr *rcvr;
1368         struct cmd_rcvr *rcvrs = NULL;
1369         int i, rv = -ENOENT;
1370 
1371         mutex_lock(&intf->cmd_rcvrs_mutex);
1372         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1373                 if (((1 << i) & chans) == 0)
1374                         continue;
1375                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1376                 if (rcvr == NULL)
1377                         continue;
1378                 if (rcvr->user == user) {
1379                         rv = 0;
1380                         rcvr->chans &= ~chans;
1381                         if (rcvr->chans == 0) {
1382                                 list_del_rcu(&rcvr->link);
1383                                 rcvr->next = rcvrs;
1384                                 rcvrs = rcvr;
1385                         }
1386                 }
1387         }
1388         mutex_unlock(&intf->cmd_rcvrs_mutex);
1389         synchronize_rcu();
1390         while (rcvrs) {
1391                 atomic_dec(&intf->event_waiters);
1392                 rcvr = rcvrs;
1393                 rcvrs = rcvr->next;
1394                 kfree(rcvr);
1395         }
1396         return rv;
1397 }
1398 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1399 
1400 static unsigned char
1401 ipmb_checksum(unsigned char *data, int size)
1402 {
1403         unsigned char csum = 0;
1404 
1405         for (; size > 0; size--, data++)
1406                 csum += *data;
1407 
1408         return -csum;
1409 }
1410 
1411 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1412                                    struct kernel_ipmi_msg *msg,
1413                                    struct ipmi_ipmb_addr *ipmb_addr,
1414                                    long                  msgid,
1415                                    unsigned char         ipmb_seq,
1416                                    int                   broadcast,
1417                                    unsigned char         source_address,
1418                                    unsigned char         source_lun)
1419 {
1420         int i = broadcast;
1421 
1422         /* Format the IPMB header data. */
1423         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1424         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1425         smi_msg->data[2] = ipmb_addr->channel;
1426         if (broadcast)
1427                 smi_msg->data[3] = 0;
1428         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1429         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1430         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1431         smi_msg->data[i+6] = source_address;
1432         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1433         smi_msg->data[i+8] = msg->cmd;
1434 
1435         /* Now tack on the data to the message. */
1436         if (msg->data_len > 0)
1437                 memcpy(&(smi_msg->data[i+9]), msg->data,
1438                        msg->data_len);
1439         smi_msg->data_size = msg->data_len + 9;
1440 
1441         /* Now calculate the checksum and tack it on. */
1442         smi_msg->data[i+smi_msg->data_size]
1443                 = ipmb_checksum(&(smi_msg->data[i+6]),
1444                                 smi_msg->data_size-6);
1445 
1446         /*
1447          * Add on the checksum size and the offset from the
1448          * broadcast.
1449          */
1450         smi_msg->data_size += 1 + i;
1451 
1452         smi_msg->msgid = msgid;
1453 }
1454 
1455 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1456                                   struct kernel_ipmi_msg *msg,
1457                                   struct ipmi_lan_addr  *lan_addr,
1458                                   long                  msgid,
1459                                   unsigned char         ipmb_seq,
1460                                   unsigned char         source_lun)
1461 {
1462         /* Format the IPMB header data. */
1463         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1464         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1465         smi_msg->data[2] = lan_addr->channel;
1466         smi_msg->data[3] = lan_addr->session_handle;
1467         smi_msg->data[4] = lan_addr->remote_SWID;
1468         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1469         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1470         smi_msg->data[7] = lan_addr->local_SWID;
1471         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1472         smi_msg->data[9] = msg->cmd;
1473 
1474         /* Now tack on the data to the message. */
1475         if (msg->data_len > 0)
1476                 memcpy(&(smi_msg->data[10]), msg->data,
1477                        msg->data_len);
1478         smi_msg->data_size = msg->data_len + 10;
1479 
1480         /* Now calculate the checksum and tack it on. */
1481         smi_msg->data[smi_msg->data_size]
1482                 = ipmb_checksum(&(smi_msg->data[7]),
1483                                 smi_msg->data_size-7);
1484 
1485         /*
1486          * Add on the checksum size and the offset from the
1487          * broadcast.
1488          */
1489         smi_msg->data_size += 1;
1490 
1491         smi_msg->msgid = msgid;
1492 }
1493 
1494 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1495                                              struct ipmi_smi_msg *smi_msg,
1496                                              int priority)
1497 {
1498         if (intf->curr_msg) {
1499                 if (priority > 0)
1500                         list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1501                 else
1502                         list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1503                 smi_msg = NULL;
1504         } else {
1505                 intf->curr_msg = smi_msg;
1506         }
1507 
1508         return smi_msg;
1509 }
1510 
1511 
1512 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
1513                      struct ipmi_smi_msg *smi_msg, int priority)
1514 {
1515         int run_to_completion = intf->run_to_completion;
1516 
1517         if (run_to_completion) {
1518                 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1519         } else {
1520                 unsigned long flags;
1521 
1522                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1523                 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1524                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1525         }
1526 
1527         if (smi_msg)
1528                 handlers->sender(intf->send_info, smi_msg);
1529 }
1530 
1531 /*
1532  * Separate from ipmi_request so that the user does not have to be
1533  * supplied in certain circumstances (mainly at panic time).  If
1534  * messages are supplied, they will be freed, even if an error
1535  * occurs.
1536  */
1537 static int i_ipmi_request(ipmi_user_t          user,
1538                           ipmi_smi_t           intf,
1539                           struct ipmi_addr     *addr,
1540                           long                 msgid,
1541                           struct kernel_ipmi_msg *msg,
1542                           void                 *user_msg_data,
1543                           void                 *supplied_smi,
1544                           struct ipmi_recv_msg *supplied_recv,
1545                           int                  priority,
1546                           unsigned char        source_address,
1547                           unsigned char        source_lun,
1548                           int                  retries,
1549                           unsigned int         retry_time_ms)
1550 {
1551         int                      rv = 0;
1552         struct ipmi_smi_msg      *smi_msg;
1553         struct ipmi_recv_msg     *recv_msg;
1554         unsigned long            flags;
1555 
1556 
1557         if (supplied_recv)
1558                 recv_msg = supplied_recv;
1559         else {
1560                 recv_msg = ipmi_alloc_recv_msg();
1561                 if (recv_msg == NULL)
1562                         return -ENOMEM;
1563         }
1564         recv_msg->user_msg_data = user_msg_data;
1565 
1566         if (supplied_smi)
1567                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1568         else {
1569                 smi_msg = ipmi_alloc_smi_msg();
1570                 if (smi_msg == NULL) {
1571                         ipmi_free_recv_msg(recv_msg);
1572                         return -ENOMEM;
1573                 }
1574         }
1575 
1576         rcu_read_lock();
1577         if (intf->in_shutdown) {
1578                 rv = -ENODEV;
1579                 goto out_err;
1580         }
1581 
1582         recv_msg->user = user;
1583         if (user)
1584                 kref_get(&user->refcount);
1585         recv_msg->msgid = msgid;
1586         /*
1587          * Store the message to send in the receive message so timeout
1588          * responses can get the proper response data.
1589          */
1590         recv_msg->msg = *msg;
1591 
1592         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1593                 struct ipmi_system_interface_addr *smi_addr;
1594 
1595                 if (msg->netfn & 1) {
1596                         /* Responses are not allowed to the SMI. */
1597                         rv = -EINVAL;
1598                         goto out_err;
1599                 }
1600 
1601                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1602                 if (smi_addr->lun > 3) {
1603                         ipmi_inc_stat(intf, sent_invalid_commands);
1604                         rv = -EINVAL;
1605                         goto out_err;
1606                 }
1607 
1608                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1609 
1610                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1611                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1612                         || (msg->cmd == IPMI_GET_MSG_CMD)
1613                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1614                         /*
1615                          * We don't let the user do these, since we manage
1616                          * the sequence numbers.
1617                          */
1618                         ipmi_inc_stat(intf, sent_invalid_commands);
1619                         rv = -EINVAL;
1620                         goto out_err;
1621                 }
1622 
1623                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1624                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1625                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1626                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1627                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1628                         intf->auto_maintenance_timeout
1629                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1630                         if (!intf->maintenance_mode
1631                             && !intf->maintenance_mode_enable) {
1632                                 intf->maintenance_mode_enable = true;
1633                                 maintenance_mode_update(intf);
1634                         }
1635                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1636                                                flags);
1637                 }
1638 
1639                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1640                         ipmi_inc_stat(intf, sent_invalid_commands);
1641                         rv = -EMSGSIZE;
1642                         goto out_err;
1643                 }
1644 
1645                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1646                 smi_msg->data[1] = msg->cmd;
1647                 smi_msg->msgid = msgid;
1648                 smi_msg->user_data = recv_msg;
1649                 if (msg->data_len > 0)
1650                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1651                 smi_msg->data_size = msg->data_len + 2;
1652                 ipmi_inc_stat(intf, sent_local_commands);
1653         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1654                 struct ipmi_ipmb_addr *ipmb_addr;
1655                 unsigned char         ipmb_seq;
1656                 long                  seqid;
1657                 int                   broadcast = 0;
1658 
1659                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1660                         ipmi_inc_stat(intf, sent_invalid_commands);
1661                         rv = -EINVAL;
1662                         goto out_err;
1663                 }
1664 
1665                 if (intf->channels[addr->channel].medium
1666                                         != IPMI_CHANNEL_MEDIUM_IPMB) {
1667                         ipmi_inc_stat(intf, sent_invalid_commands);
1668                         rv = -EINVAL;
1669                         goto out_err;
1670                 }
1671 
1672                 if (retries < 0) {
1673                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1674                         retries = 0; /* Don't retry broadcasts. */
1675                     else
1676                         retries = 4;
1677                 }
1678                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1679                     /*
1680                      * Broadcasts add a zero at the beginning of the
1681                      * message, but otherwise is the same as an IPMB
1682                      * address.
1683                      */
1684                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1685                     broadcast = 1;
1686                 }
1687 
1688 
1689                 /* Default to 1 second retries. */
1690                 if (retry_time_ms == 0)
1691                     retry_time_ms = 1000;
1692 
1693                 /*
1694                  * 9 for the header and 1 for the checksum, plus
1695                  * possibly one for the broadcast.
1696                  */
1697                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1698                         ipmi_inc_stat(intf, sent_invalid_commands);
1699                         rv = -EMSGSIZE;
1700                         goto out_err;
1701                 }
1702 
1703                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1704                 if (ipmb_addr->lun > 3) {
1705                         ipmi_inc_stat(intf, sent_invalid_commands);
1706                         rv = -EINVAL;
1707                         goto out_err;
1708                 }
1709 
1710                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1711 
1712                 if (recv_msg->msg.netfn & 0x1) {
1713                         /*
1714                          * It's a response, so use the user's sequence
1715                          * from msgid.
1716                          */
1717                         ipmi_inc_stat(intf, sent_ipmb_responses);
1718                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1719                                         msgid, broadcast,
1720                                         source_address, source_lun);
1721 
1722                         /*
1723                          * Save the receive message so we can use it
1724                          * to deliver the response.
1725                          */
1726                         smi_msg->user_data = recv_msg;
1727                 } else {
1728                         /* It's a command, so get a sequence for it. */
1729 
1730                         spin_lock_irqsave(&(intf->seq_lock), flags);
1731 
1732                         /*
1733                          * Create a sequence number with a 1 second
1734                          * timeout and 4 retries.
1735                          */
1736                         rv = intf_next_seq(intf,
1737                                            recv_msg,
1738                                            retry_time_ms,
1739                                            retries,
1740                                            broadcast,
1741                                            &ipmb_seq,
1742                                            &seqid);
1743                         if (rv) {
1744                                 /*
1745                                  * We have used up all the sequence numbers,
1746                                  * probably, so abort.
1747                                  */
1748                                 spin_unlock_irqrestore(&(intf->seq_lock),
1749                                                        flags);
1750                                 goto out_err;
1751                         }
1752 
1753                         ipmi_inc_stat(intf, sent_ipmb_commands);
1754 
1755                         /*
1756                          * Store the sequence number in the message,
1757                          * so that when the send message response
1758                          * comes back we can start the timer.
1759                          */
1760                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1761                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1762                                         ipmb_seq, broadcast,
1763                                         source_address, source_lun);
1764 
1765                         /*
1766                          * Copy the message into the recv message data, so we
1767                          * can retransmit it later if necessary.
1768                          */
1769                         memcpy(recv_msg->msg_data, smi_msg->data,
1770                                smi_msg->data_size);
1771                         recv_msg->msg.data = recv_msg->msg_data;
1772                         recv_msg->msg.data_len = smi_msg->data_size;
1773 
1774                         /*
1775                          * We don't unlock until here, because we need
1776                          * to copy the completed message into the
1777                          * recv_msg before we release the lock.
1778                          * Otherwise, race conditions may bite us.  I
1779                          * know that's pretty paranoid, but I prefer
1780                          * to be correct.
1781                          */
1782                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1783                 }
1784         } else if (is_lan_addr(addr)) {
1785                 struct ipmi_lan_addr  *lan_addr;
1786                 unsigned char         ipmb_seq;
1787                 long                  seqid;
1788 
1789                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1790                         ipmi_inc_stat(intf, sent_invalid_commands);
1791                         rv = -EINVAL;
1792                         goto out_err;
1793                 }
1794 
1795                 if ((intf->channels[addr->channel].medium
1796                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
1797                     && (intf->channels[addr->channel].medium
1798                                 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1799                         ipmi_inc_stat(intf, sent_invalid_commands);
1800                         rv = -EINVAL;
1801                         goto out_err;
1802                 }
1803 
1804                 retries = 4;
1805 
1806                 /* Default to 1 second retries. */
1807                 if (retry_time_ms == 0)
1808                     retry_time_ms = 1000;
1809 
1810                 /* 11 for the header and 1 for the checksum. */
1811                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1812                         ipmi_inc_stat(intf, sent_invalid_commands);
1813                         rv = -EMSGSIZE;
1814                         goto out_err;
1815                 }
1816 
1817                 lan_addr = (struct ipmi_lan_addr *) addr;
1818                 if (lan_addr->lun > 3) {
1819                         ipmi_inc_stat(intf, sent_invalid_commands);
1820                         rv = -EINVAL;
1821                         goto out_err;
1822                 }
1823 
1824                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1825 
1826                 if (recv_msg->msg.netfn & 0x1) {
1827                         /*
1828                          * It's a response, so use the user's sequence
1829                          * from msgid.
1830                          */
1831                         ipmi_inc_stat(intf, sent_lan_responses);
1832                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1833                                        msgid, source_lun);
1834 
1835                         /*
1836                          * Save the receive message so we can use it
1837                          * to deliver the response.
1838                          */
1839                         smi_msg->user_data = recv_msg;
1840                 } else {
1841                         /* It's a command, so get a sequence for it. */
1842 
1843                         spin_lock_irqsave(&(intf->seq_lock), flags);
1844 
1845                         /*
1846                          * Create a sequence number with a 1 second
1847                          * timeout and 4 retries.
1848                          */
1849                         rv = intf_next_seq(intf,
1850                                            recv_msg,
1851                                            retry_time_ms,
1852                                            retries,
1853                                            0,
1854                                            &ipmb_seq,
1855                                            &seqid);
1856                         if (rv) {
1857                                 /*
1858                                  * We have used up all the sequence numbers,
1859                                  * probably, so abort.
1860                                  */
1861                                 spin_unlock_irqrestore(&(intf->seq_lock),
1862                                                        flags);
1863                                 goto out_err;
1864                         }
1865 
1866                         ipmi_inc_stat(intf, sent_lan_commands);
1867 
1868                         /*
1869                          * Store the sequence number in the message,
1870                          * so that when the send message response
1871                          * comes back we can start the timer.
1872                          */
1873                         format_lan_msg(smi_msg, msg, lan_addr,
1874                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1875                                        ipmb_seq, source_lun);
1876 
1877                         /*
1878                          * Copy the message into the recv message data, so we
1879                          * can retransmit it later if necessary.
1880                          */
1881                         memcpy(recv_msg->msg_data, smi_msg->data,
1882                                smi_msg->data_size);
1883                         recv_msg->msg.data = recv_msg->msg_data;
1884                         recv_msg->msg.data_len = smi_msg->data_size;
1885 
1886                         /*
1887                          * We don't unlock until here, because we need
1888                          * to copy the completed message into the
1889                          * recv_msg before we release the lock.
1890                          * Otherwise, race conditions may bite us.  I
1891                          * know that's pretty paranoid, but I prefer
1892                          * to be correct.
1893                          */
1894                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1895                 }
1896         } else {
1897             /* Unknown address type. */
1898                 ipmi_inc_stat(intf, sent_invalid_commands);
1899                 rv = -EINVAL;
1900                 goto out_err;
1901         }
1902 
1903 #ifdef DEBUG_MSGING
1904         {
1905                 int m;
1906                 for (m = 0; m < smi_msg->data_size; m++)
1907                         printk(" %2.2x", smi_msg->data[m]);
1908                 printk("\n");
1909         }
1910 #endif
1911 
1912         smi_send(intf, intf->handlers, smi_msg, priority);
1913         rcu_read_unlock();
1914 
1915         return 0;
1916 
1917  out_err:
1918         rcu_read_unlock();
1919         ipmi_free_smi_msg(smi_msg);
1920         ipmi_free_recv_msg(recv_msg);
1921         return rv;
1922 }
1923 
1924 static int check_addr(ipmi_smi_t       intf,
1925                       struct ipmi_addr *addr,
1926                       unsigned char    *saddr,
1927                       unsigned char    *lun)
1928 {
1929         if (addr->channel >= IPMI_MAX_CHANNELS)
1930                 return -EINVAL;
1931         *lun = intf->channels[addr->channel].lun;
1932         *saddr = intf->channels[addr->channel].address;
1933         return 0;
1934 }
1935 
1936 int ipmi_request_settime(ipmi_user_t      user,
1937                          struct ipmi_addr *addr,
1938                          long             msgid,
1939                          struct kernel_ipmi_msg  *msg,
1940                          void             *user_msg_data,
1941                          int              priority,
1942                          int              retries,
1943                          unsigned int     retry_time_ms)
1944 {
1945         unsigned char saddr = 0, lun = 0;
1946         int           rv;
1947 
1948         if (!user)
1949                 return -EINVAL;
1950         rv = check_addr(user->intf, addr, &saddr, &lun);
1951         if (rv)
1952                 return rv;
1953         return i_ipmi_request(user,
1954                               user->intf,
1955                               addr,
1956                               msgid,
1957                               msg,
1958                               user_msg_data,
1959                               NULL, NULL,
1960                               priority,
1961                               saddr,
1962                               lun,
1963                               retries,
1964                               retry_time_ms);
1965 }
1966 EXPORT_SYMBOL(ipmi_request_settime);
1967 
1968 int ipmi_request_supply_msgs(ipmi_user_t          user,
1969                              struct ipmi_addr     *addr,
1970                              long                 msgid,
1971                              struct kernel_ipmi_msg *msg,
1972                              void                 *user_msg_data,
1973                              void                 *supplied_smi,
1974                              struct ipmi_recv_msg *supplied_recv,
1975                              int                  priority)
1976 {
1977         unsigned char saddr = 0, lun = 0;
1978         int           rv;
1979 
1980         if (!user)
1981                 return -EINVAL;
1982         rv = check_addr(user->intf, addr, &saddr, &lun);
1983         if (rv)
1984                 return rv;
1985         return i_ipmi_request(user,
1986                               user->intf,
1987                               addr,
1988                               msgid,
1989                               msg,
1990                               user_msg_data,
1991                               supplied_smi,
1992                               supplied_recv,
1993                               priority,
1994                               saddr,
1995                               lun,
1996                               -1, 0);
1997 }
1998 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1999 
2000 #ifdef CONFIG_PROC_FS
2001 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
2002 {
2003         ipmi_smi_t intf = m->private;
2004         int        i;
2005 
2006         seq_printf(m, "%x", intf->channels[0].address);
2007         for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2008                 seq_printf(m, " %x", intf->channels[i].address);
2009         seq_putc(m, '\n');
2010 
2011         return 0;
2012 }
2013 
2014 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2015 {
2016         return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2017 }
2018 
2019 static const struct file_operations smi_ipmb_proc_ops = {
2020         .open           = smi_ipmb_proc_open,
2021         .read           = seq_read,
2022         .llseek         = seq_lseek,
2023         .release        = single_release,
2024 };
2025 
2026 static int smi_version_proc_show(struct seq_file *m, void *v)
2027 {
2028         ipmi_smi_t intf = m->private;
2029 
2030         seq_printf(m, "%u.%u\n",
2031                    ipmi_version_major(&intf->bmc->id),
2032                    ipmi_version_minor(&intf->bmc->id));
2033 
2034         return 0;
2035 }
2036 
2037 static int smi_version_proc_open(struct inode *inode, struct file *file)
2038 {
2039         return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2040 }
2041 
2042 static const struct file_operations smi_version_proc_ops = {
2043         .open           = smi_version_proc_open,
2044         .read           = seq_read,
2045         .llseek         = seq_lseek,
2046         .release        = single_release,
2047 };
2048 
2049 static int smi_stats_proc_show(struct seq_file *m, void *v)
2050 {
2051         ipmi_smi_t intf = m->private;
2052 
2053         seq_printf(m, "sent_invalid_commands:       %u\n",
2054                        ipmi_get_stat(intf, sent_invalid_commands));
2055         seq_printf(m, "sent_local_commands:         %u\n",
2056                        ipmi_get_stat(intf, sent_local_commands));
2057         seq_printf(m, "handled_local_responses:     %u\n",
2058                        ipmi_get_stat(intf, handled_local_responses));
2059         seq_printf(m, "unhandled_local_responses:   %u\n",
2060                        ipmi_get_stat(intf, unhandled_local_responses));
2061         seq_printf(m, "sent_ipmb_commands:          %u\n",
2062                        ipmi_get_stat(intf, sent_ipmb_commands));
2063         seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2064                        ipmi_get_stat(intf, sent_ipmb_command_errs));
2065         seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2066                        ipmi_get_stat(intf, retransmitted_ipmb_commands));
2067         seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2068                        ipmi_get_stat(intf, timed_out_ipmb_commands));
2069         seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2070                        ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2071         seq_printf(m, "sent_ipmb_responses:         %u\n",
2072                        ipmi_get_stat(intf, sent_ipmb_responses));
2073         seq_printf(m, "handled_ipmb_responses:      %u\n",
2074                        ipmi_get_stat(intf, handled_ipmb_responses));
2075         seq_printf(m, "invalid_ipmb_responses:      %u\n",
2076                        ipmi_get_stat(intf, invalid_ipmb_responses));
2077         seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2078                        ipmi_get_stat(intf, unhandled_ipmb_responses));
2079         seq_printf(m, "sent_lan_commands:           %u\n",
2080                        ipmi_get_stat(intf, sent_lan_commands));
2081         seq_printf(m, "sent_lan_command_errs:       %u\n",
2082                        ipmi_get_stat(intf, sent_lan_command_errs));
2083         seq_printf(m, "retransmitted_lan_commands:  %u\n",
2084                        ipmi_get_stat(intf, retransmitted_lan_commands));
2085         seq_printf(m, "timed_out_lan_commands:      %u\n",
2086                        ipmi_get_stat(intf, timed_out_lan_commands));
2087         seq_printf(m, "sent_lan_responses:          %u\n",
2088                        ipmi_get_stat(intf, sent_lan_responses));
2089         seq_printf(m, "handled_lan_responses:       %u\n",
2090                        ipmi_get_stat(intf, handled_lan_responses));
2091         seq_printf(m, "invalid_lan_responses:       %u\n",
2092                        ipmi_get_stat(intf, invalid_lan_responses));
2093         seq_printf(m, "unhandled_lan_responses:     %u\n",
2094                        ipmi_get_stat(intf, unhandled_lan_responses));
2095         seq_printf(m, "handled_commands:            %u\n",
2096                        ipmi_get_stat(intf, handled_commands));
2097         seq_printf(m, "invalid_commands:            %u\n",
2098                        ipmi_get_stat(intf, invalid_commands));
2099         seq_printf(m, "unhandled_commands:          %u\n",
2100                        ipmi_get_stat(intf, unhandled_commands));
2101         seq_printf(m, "invalid_events:              %u\n",
2102                        ipmi_get_stat(intf, invalid_events));
2103         seq_printf(m, "events:                      %u\n",
2104                        ipmi_get_stat(intf, events));
2105         seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2106                        ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2107         seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2108                        ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2109         return 0;
2110 }
2111 
2112 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2113 {
2114         return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2115 }
2116 
2117 static const struct file_operations smi_stats_proc_ops = {
2118         .open           = smi_stats_proc_open,
2119         .read           = seq_read,
2120         .llseek         = seq_lseek,
2121         .release        = single_release,
2122 };
2123 #endif /* CONFIG_PROC_FS */
2124 
2125 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2126                             const struct file_operations *proc_ops,
2127                             void *data)
2128 {
2129         int                    rv = 0;
2130 #ifdef CONFIG_PROC_FS
2131         struct proc_dir_entry  *file;
2132         struct ipmi_proc_entry *entry;
2133 
2134         /* Create a list element. */
2135         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2136         if (!entry)
2137                 return -ENOMEM;
2138         entry->name = kstrdup(name, GFP_KERNEL);
2139         if (!entry->name) {
2140                 kfree(entry);
2141                 return -ENOMEM;
2142         }
2143 
2144         file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2145         if (!file) {
2146                 kfree(entry->name);
2147                 kfree(entry);
2148                 rv = -ENOMEM;
2149         } else {
2150                 mutex_lock(&smi->proc_entry_lock);
2151                 /* Stick it on the list. */
2152                 entry->next = smi->proc_entries;
2153                 smi->proc_entries = entry;
2154                 mutex_unlock(&smi->proc_entry_lock);
2155         }
2156 #endif /* CONFIG_PROC_FS */
2157 
2158         return rv;
2159 }
2160 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2161 
2162 static int add_proc_entries(ipmi_smi_t smi, int num)
2163 {
2164         int rv = 0;
2165 
2166 #ifdef CONFIG_PROC_FS
2167         sprintf(smi->proc_dir_name, "%d", num);
2168         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2169         if (!smi->proc_dir)
2170                 rv = -ENOMEM;
2171 
2172         if (rv == 0)
2173                 rv = ipmi_smi_add_proc_entry(smi, "stats",
2174                                              &smi_stats_proc_ops,
2175                                              smi);
2176 
2177         if (rv == 0)
2178                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2179                                              &smi_ipmb_proc_ops,
2180                                              smi);
2181 
2182         if (rv == 0)
2183                 rv = ipmi_smi_add_proc_entry(smi, "version",
2184                                              &smi_version_proc_ops,
2185                                              smi);
2186 #endif /* CONFIG_PROC_FS */
2187 
2188         return rv;
2189 }
2190 
2191 static void remove_proc_entries(ipmi_smi_t smi)
2192 {
2193 #ifdef CONFIG_PROC_FS
2194         struct ipmi_proc_entry *entry;
2195 
2196         mutex_lock(&smi->proc_entry_lock);
2197         while (smi->proc_entries) {
2198                 entry = smi->proc_entries;
2199                 smi->proc_entries = entry->next;
2200 
2201                 remove_proc_entry(entry->name, smi->proc_dir);
2202                 kfree(entry->name);
2203                 kfree(entry);
2204         }
2205         mutex_unlock(&smi->proc_entry_lock);
2206         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2207 #endif /* CONFIG_PROC_FS */
2208 }
2209 
2210 static int __find_bmc_guid(struct device *dev, void *data)
2211 {
2212         unsigned char *id = data;
2213         struct bmc_device *bmc = to_bmc_device(dev);
2214         return memcmp(bmc->guid, id, 16) == 0;
2215 }
2216 
2217 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2218                                              unsigned char *guid)
2219 {
2220         struct device *dev;
2221 
2222         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2223         if (dev)
2224                 return to_bmc_device(dev);
2225         else
2226                 return NULL;
2227 }
2228 
2229 struct prod_dev_id {
2230         unsigned int  product_id;
2231         unsigned char device_id;
2232 };
2233 
2234 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2235 {
2236         struct prod_dev_id *id = data;
2237         struct bmc_device *bmc = to_bmc_device(dev);
2238 
2239         return (bmc->id.product_id == id->product_id
2240                 && bmc->id.device_id == id->device_id);
2241 }
2242 
2243 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2244         struct device_driver *drv,
2245         unsigned int product_id, unsigned char device_id)
2246 {
2247         struct prod_dev_id id = {
2248                 .product_id = product_id,
2249                 .device_id = device_id,
2250         };
2251         struct device *dev;
2252 
2253         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2254         if (dev)
2255                 return to_bmc_device(dev);
2256         else
2257                 return NULL;
2258 }
2259 
2260 static ssize_t device_id_show(struct device *dev,
2261                               struct device_attribute *attr,
2262                               char *buf)
2263 {
2264         struct bmc_device *bmc = to_bmc_device(dev);
2265 
2266         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2267 }
2268 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2269 
2270 static ssize_t provides_device_sdrs_show(struct device *dev,
2271                                          struct device_attribute *attr,
2272                                          char *buf)
2273 {
2274         struct bmc_device *bmc = to_bmc_device(dev);
2275 
2276         return snprintf(buf, 10, "%u\n",
2277                         (bmc->id.device_revision & 0x80) >> 7);
2278 }
2279 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2280                    NULL);
2281 
2282 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2283                              char *buf)
2284 {
2285         struct bmc_device *bmc = to_bmc_device(dev);
2286 
2287         return snprintf(buf, 20, "%u\n",
2288                         bmc->id.device_revision & 0x0F);
2289 }
2290 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2291 
2292 static ssize_t firmware_revision_show(struct device *dev,
2293                                       struct device_attribute *attr,
2294                                       char *buf)
2295 {
2296         struct bmc_device *bmc = to_bmc_device(dev);
2297 
2298         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2299                         bmc->id.firmware_revision_2);
2300 }
2301 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2302 
2303 static ssize_t ipmi_version_show(struct device *dev,
2304                                  struct device_attribute *attr,
2305                                  char *buf)
2306 {
2307         struct bmc_device *bmc = to_bmc_device(dev);
2308 
2309         return snprintf(buf, 20, "%u.%u\n",
2310                         ipmi_version_major(&bmc->id),
2311                         ipmi_version_minor(&bmc->id));
2312 }
2313 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2314 
2315 static ssize_t add_dev_support_show(struct device *dev,
2316                                     struct device_attribute *attr,
2317                                     char *buf)
2318 {
2319         struct bmc_device *bmc = to_bmc_device(dev);
2320 
2321         return snprintf(buf, 10, "0x%02x\n",
2322                         bmc->id.additional_device_support);
2323 }
2324 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2325                    NULL);
2326 
2327 static ssize_t manufacturer_id_show(struct device *dev,
2328                                     struct device_attribute *attr,
2329                                     char *buf)
2330 {
2331         struct bmc_device *bmc = to_bmc_device(dev);
2332 
2333         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2334 }
2335 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2336 
2337 static ssize_t product_id_show(struct device *dev,
2338                                struct device_attribute *attr,
2339                                char *buf)
2340 {
2341         struct bmc_device *bmc = to_bmc_device(dev);
2342 
2343         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2344 }
2345 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2346 
2347 static ssize_t aux_firmware_rev_show(struct device *dev,
2348                                      struct device_attribute *attr,
2349                                      char *buf)
2350 {
2351         struct bmc_device *bmc = to_bmc_device(dev);
2352 
2353         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2354                         bmc->id.aux_firmware_revision[3],
2355                         bmc->id.aux_firmware_revision[2],
2356                         bmc->id.aux_firmware_revision[1],
2357                         bmc->id.aux_firmware_revision[0]);
2358 }
2359 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2360 
2361 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2362                          char *buf)
2363 {
2364         struct bmc_device *bmc = to_bmc_device(dev);
2365 
2366         return snprintf(buf, 100, "%Lx%Lx\n",
2367                         (long long) bmc->guid[0],
2368                         (long long) bmc->guid[8]);
2369 }
2370 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2371 
2372 static struct attribute *bmc_dev_attrs[] = {
2373         &dev_attr_device_id.attr,
2374         &dev_attr_provides_device_sdrs.attr,
2375         &dev_attr_revision.attr,
2376         &dev_attr_firmware_revision.attr,
2377         &dev_attr_ipmi_version.attr,
2378         &dev_attr_additional_device_support.attr,
2379         &dev_attr_manufacturer_id.attr,
2380         &dev_attr_product_id.attr,
2381         &dev_attr_aux_firmware_revision.attr,
2382         &dev_attr_guid.attr,
2383         NULL
2384 };
2385 
2386 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2387                                        struct attribute *attr, int idx)
2388 {
2389         struct device *dev = kobj_to_dev(kobj);
2390         struct bmc_device *bmc = to_bmc_device(dev);
2391         umode_t mode = attr->mode;
2392 
2393         if (attr == &dev_attr_aux_firmware_revision.attr)
2394                 return bmc->id.aux_firmware_revision_set ? mode : 0;
2395         if (attr == &dev_attr_guid.attr)
2396                 return bmc->guid_set ? mode : 0;
2397         return mode;
2398 }
2399 
2400 static struct attribute_group bmc_dev_attr_group = {
2401         .attrs          = bmc_dev_attrs,
2402         .is_visible     = bmc_dev_attr_is_visible,
2403 };
2404 
2405 static const struct attribute_group *bmc_dev_attr_groups[] = {
2406         &bmc_dev_attr_group,
2407         NULL
2408 };
2409 
2410 static struct device_type bmc_device_type = {
2411         .groups         = bmc_dev_attr_groups,
2412 };
2413 
2414 static void
2415 release_bmc_device(struct device *dev)
2416 {
2417         kfree(to_bmc_device(dev));
2418 }
2419 
2420 static void
2421 cleanup_bmc_device(struct kref *ref)
2422 {
2423         struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2424 
2425         platform_device_unregister(&bmc->pdev);
2426 }
2427 
2428 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2429 {
2430         struct bmc_device *bmc = intf->bmc;
2431 
2432         sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2433         if (intf->my_dev_name) {
2434                 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2435                 kfree(intf->my_dev_name);
2436                 intf->my_dev_name = NULL;
2437         }
2438 
2439         mutex_lock(&ipmidriver_mutex);
2440         kref_put(&bmc->usecount, cleanup_bmc_device);
2441         intf->bmc = NULL;
2442         mutex_unlock(&ipmidriver_mutex);
2443 }
2444 
2445 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2446 {
2447         int               rv;
2448         struct bmc_device *bmc = intf->bmc;
2449         struct bmc_device *old_bmc;
2450 
2451         mutex_lock(&ipmidriver_mutex);
2452 
2453         /*
2454          * Try to find if there is an bmc_device struct
2455          * representing the interfaced BMC already
2456          */
2457         if (bmc->guid_set)
2458                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2459         else
2460                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2461                                                     bmc->id.product_id,
2462                                                     bmc->id.device_id);
2463 
2464         /*
2465          * If there is already an bmc_device, free the new one,
2466          * otherwise register the new BMC device
2467          */
2468         if (old_bmc) {
2469                 kfree(bmc);
2470                 intf->bmc = old_bmc;
2471                 bmc = old_bmc;
2472 
2473                 kref_get(&bmc->usecount);
2474                 mutex_unlock(&ipmidriver_mutex);
2475 
2476                 printk(KERN_INFO
2477                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2478                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2479                        bmc->id.manufacturer_id,
2480                        bmc->id.product_id,
2481                        bmc->id.device_id);
2482         } else {
2483                 unsigned char orig_dev_id = bmc->id.device_id;
2484                 int warn_printed = 0;
2485 
2486                 snprintf(bmc->name, sizeof(bmc->name),
2487                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2488                 bmc->pdev.name = bmc->name;
2489 
2490                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2491                                                  bmc->id.product_id,
2492                                                  bmc->id.device_id)) {
2493                         if (!warn_printed) {
2494                                 printk(KERN_WARNING PFX
2495                                        "This machine has two different BMCs"
2496                                        " with the same product id and device"
2497                                        " id.  This is an error in the"
2498                                        " firmware, but incrementing the"
2499                                        " device id to work around the problem."
2500                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2501                                        bmc->id.product_id, bmc->id.device_id);
2502                                 warn_printed = 1;
2503                         }
2504                         bmc->id.device_id++; /* Wraps at 255 */
2505                         if (bmc->id.device_id == orig_dev_id) {
2506                                 printk(KERN_ERR PFX
2507                                        "Out of device ids!\n");
2508                                 break;
2509                         }
2510                 }
2511 
2512                 bmc->pdev.dev.driver = &ipmidriver.driver;
2513                 bmc->pdev.id = bmc->id.device_id;
2514                 bmc->pdev.dev.release = release_bmc_device;
2515                 bmc->pdev.dev.type = &bmc_device_type;
2516                 kref_init(&bmc->usecount);
2517 
2518                 rv = platform_device_register(&bmc->pdev);
2519                 mutex_unlock(&ipmidriver_mutex);
2520                 if (rv) {
2521                         put_device(&bmc->pdev.dev);
2522                         printk(KERN_ERR
2523                                "ipmi_msghandler:"
2524                                " Unable to register bmc device: %d\n",
2525                                rv);
2526                         /*
2527                          * Don't go to out_err, you can only do that if
2528                          * the device is registered already.
2529                          */
2530                         return rv;
2531                 }
2532 
2533                 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2534                          "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2535                          bmc->id.manufacturer_id,
2536                          bmc->id.product_id,
2537                          bmc->id.device_id);
2538         }
2539 
2540         /*
2541          * create symlink from system interface device to bmc device
2542          * and back.
2543          */
2544         rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2545         if (rv) {
2546                 printk(KERN_ERR
2547                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2548                        rv);
2549                 goto out_err;
2550         }
2551 
2552         intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2553         if (!intf->my_dev_name) {
2554                 rv = -ENOMEM;
2555                 printk(KERN_ERR
2556                        "ipmi_msghandler: allocate link from BMC: %d\n",
2557                        rv);
2558                 goto out_err;
2559         }
2560 
2561         rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2562                                intf->my_dev_name);
2563         if (rv) {
2564                 kfree(intf->my_dev_name);
2565                 intf->my_dev_name = NULL;
2566                 printk(KERN_ERR
2567                        "ipmi_msghandler:"
2568                        " Unable to create symlink to bmc: %d\n",
2569                        rv);
2570                 goto out_err;
2571         }
2572 
2573         return 0;
2574 
2575 out_err:
2576         ipmi_bmc_unregister(intf);
2577         return rv;
2578 }
2579 
2580 static int
2581 send_guid_cmd(ipmi_smi_t intf, int chan)
2582 {
2583         struct kernel_ipmi_msg            msg;
2584         struct ipmi_system_interface_addr si;
2585 
2586         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2587         si.channel = IPMI_BMC_CHANNEL;
2588         si.lun = 0;
2589 
2590         msg.netfn = IPMI_NETFN_APP_REQUEST;
2591         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2592         msg.data = NULL;
2593         msg.data_len = 0;
2594         return i_ipmi_request(NULL,
2595                               intf,
2596                               (struct ipmi_addr *) &si,
2597                               0,
2598                               &msg,
2599                               intf,
2600                               NULL,
2601                               NULL,
2602                               0,
2603                               intf->channels[0].address,
2604                               intf->channels[0].lun,
2605                               -1, 0);
2606 }
2607 
2608 static void
2609 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2610 {
2611         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2612             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2613             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2614                 /* Not for me */
2615                 return;
2616 
2617         if (msg->msg.data[0] != 0) {
2618                 /* Error from getting the GUID, the BMC doesn't have one. */
2619                 intf->bmc->guid_set = 0;
2620                 goto out;
2621         }
2622 
2623         if (msg->msg.data_len < 17) {
2624                 intf->bmc->guid_set = 0;
2625                 printk(KERN_WARNING PFX
2626                        "guid_handler: The GUID response from the BMC was too"
2627                        " short, it was %d but should have been 17.  Assuming"
2628                        " GUID is not available.\n",
2629                        msg->msg.data_len);
2630                 goto out;
2631         }
2632 
2633         memcpy(intf->bmc->guid, msg->msg.data, 16);
2634         intf->bmc->guid_set = 1;
2635  out:
2636         wake_up(&intf->waitq);
2637 }
2638 
2639 static void
2640 get_guid(ipmi_smi_t intf)
2641 {
2642         int rv;
2643 
2644         intf->bmc->guid_set = 0x2;
2645         intf->null_user_handler = guid_handler;
2646         rv = send_guid_cmd(intf, 0);
2647         if (rv)
2648                 /* Send failed, no GUID available. */
2649                 intf->bmc->guid_set = 0;
2650         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2651         intf->null_user_handler = NULL;
2652 }
2653 
2654 static int
2655 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2656 {
2657         struct kernel_ipmi_msg            msg;
2658         unsigned char                     data[1];
2659         struct ipmi_system_interface_addr si;
2660 
2661         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2662         si.channel = IPMI_BMC_CHANNEL;
2663         si.lun = 0;
2664 
2665         msg.netfn = IPMI_NETFN_APP_REQUEST;
2666         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2667         msg.data = data;
2668         msg.data_len = 1;
2669         data[0] = chan;
2670         return i_ipmi_request(NULL,
2671                               intf,
2672                               (struct ipmi_addr *) &si,
2673                               0,
2674                               &msg,
2675                               intf,
2676                               NULL,
2677                               NULL,
2678                               0,
2679                               intf->channels[0].address,
2680                               intf->channels[0].lun,
2681                               -1, 0);
2682 }
2683 
2684 static void
2685 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2686 {
2687         int rv = 0;
2688         int chan;
2689 
2690         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2691             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2692             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2693                 /* It's the one we want */
2694                 if (msg->msg.data[0] != 0) {
2695                         /* Got an error from the channel, just go on. */
2696 
2697                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2698                                 /*
2699                                  * If the MC does not support this
2700                                  * command, that is legal.  We just
2701                                  * assume it has one IPMB at channel
2702                                  * zero.
2703                                  */
2704                                 intf->channels[0].medium
2705                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2706                                 intf->channels[0].protocol
2707                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2708 
2709                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2710                                 wake_up(&intf->waitq);
2711                                 goto out;
2712                         }
2713                         goto next_channel;
2714                 }
2715                 if (msg->msg.data_len < 4) {
2716                         /* Message not big enough, just go on. */
2717                         goto next_channel;
2718                 }
2719                 chan = intf->curr_channel;
2720                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2721                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2722 
2723  next_channel:
2724                 intf->curr_channel++;
2725                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2726                         wake_up(&intf->waitq);
2727                 else
2728                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2729 
2730                 if (rv) {
2731                         /* Got an error somehow, just give up. */
2732                         printk(KERN_WARNING PFX
2733                                "Error sending channel information for channel"
2734                                " %d: %d\n", intf->curr_channel, rv);
2735 
2736                         intf->curr_channel = IPMI_MAX_CHANNELS;
2737                         wake_up(&intf->waitq);
2738                 }
2739         }
2740  out:
2741         return;
2742 }
2743 
2744 static void ipmi_poll(ipmi_smi_t intf)
2745 {
2746         if (intf->handlers->poll)
2747                 intf->handlers->poll(intf->send_info);
2748         /* In case something came in */
2749         handle_new_recv_msgs(intf);
2750 }
2751 
2752 void ipmi_poll_interface(ipmi_user_t user)
2753 {
2754         ipmi_poll(user->intf);
2755 }
2756 EXPORT_SYMBOL(ipmi_poll_interface);
2757 
2758 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
2759                       void                     *send_info,
2760                       struct ipmi_device_id    *device_id,
2761                       struct device            *si_dev,
2762                       unsigned char            slave_addr)
2763 {
2764         int              i, j;
2765         int              rv;
2766         ipmi_smi_t       intf;
2767         ipmi_smi_t       tintf;
2768         struct list_head *link;
2769 
2770         /*
2771          * Make sure the driver is actually initialized, this handles
2772          * problems with initialization order.
2773          */
2774         if (!initialized) {
2775                 rv = ipmi_init_msghandler();
2776                 if (rv)
2777                         return rv;
2778                 /*
2779                  * The init code doesn't return an error if it was turned
2780                  * off, but it won't initialize.  Check that.
2781                  */
2782                 if (!initialized)
2783                         return -ENODEV;
2784         }
2785 
2786         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2787         if (!intf)
2788                 return -ENOMEM;
2789 
2790         intf->ipmi_version_major = ipmi_version_major(device_id);
2791         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2792 
2793         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2794         if (!intf->bmc) {
2795                 kfree(intf);
2796                 return -ENOMEM;
2797         }
2798         intf->intf_num = -1; /* Mark it invalid for now. */
2799         kref_init(&intf->refcount);
2800         intf->bmc->id = *device_id;
2801         intf->si_dev = si_dev;
2802         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2803                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2804                 intf->channels[j].lun = 2;
2805         }
2806         if (slave_addr != 0)
2807                 intf->channels[0].address = slave_addr;
2808         INIT_LIST_HEAD(&intf->users);
2809         intf->handlers = handlers;
2810         intf->send_info = send_info;
2811         spin_lock_init(&intf->seq_lock);
2812         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2813                 intf->seq_table[j].inuse = 0;
2814                 intf->seq_table[j].seqid = 0;
2815         }
2816         intf->curr_seq = 0;
2817 #ifdef CONFIG_PROC_FS
2818         mutex_init(&intf->proc_entry_lock);
2819 #endif
2820         spin_lock_init(&intf->waiting_rcv_msgs_lock);
2821         INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2822         tasklet_init(&intf->recv_tasklet,
2823                      smi_recv_tasklet,
2824                      (unsigned long) intf);
2825         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2826         spin_lock_init(&intf->xmit_msgs_lock);
2827         INIT_LIST_HEAD(&intf->xmit_msgs);
2828         INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2829         spin_lock_init(&intf->events_lock);
2830         atomic_set(&intf->event_waiters, 0);
2831         intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2832         INIT_LIST_HEAD(&intf->waiting_events);
2833         intf->waiting_events_count = 0;
2834         mutex_init(&intf->cmd_rcvrs_mutex);
2835         spin_lock_init(&intf->maintenance_mode_lock);
2836         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2837         init_waitqueue_head(&intf->waitq);
2838         for (i = 0; i < IPMI_NUM_STATS; i++)
2839                 atomic_set(&intf->stats[i], 0);
2840 
2841         intf->proc_dir = NULL;
2842 
2843         mutex_lock(&smi_watchers_mutex);
2844         mutex_lock(&ipmi_interfaces_mutex);
2845         /* Look for a hole in the numbers. */
2846         i = 0;
2847         link = &ipmi_interfaces;
2848         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2849                 if (tintf->intf_num != i) {
2850                         link = &tintf->link;
2851                         break;
2852                 }
2853                 i++;
2854         }
2855         /* Add the new interface in numeric order. */
2856         if (i == 0)
2857                 list_add_rcu(&intf->link, &ipmi_interfaces);
2858         else
2859                 list_add_tail_rcu(&intf->link, link);
2860 
2861         rv = handlers->start_processing(send_info, intf);
2862         if (rv)
2863                 goto out;
2864 
2865         get_guid(intf);
2866 
2867         if ((intf->ipmi_version_major > 1)
2868                         || ((intf->ipmi_version_major == 1)
2869                             && (intf->ipmi_version_minor >= 5))) {
2870                 /*
2871                  * Start scanning the channels to see what is
2872                  * available.
2873                  */
2874                 intf->null_user_handler = channel_handler;
2875                 intf->curr_channel = 0;
2876                 rv = send_channel_info_cmd(intf, 0);
2877                 if (rv) {
2878                         printk(KERN_WARNING PFX
2879                                "Error sending channel information for channel"
2880                                " 0, %d\n", rv);
2881                         goto out;
2882                 }
2883 
2884                 /* Wait for the channel info to be read. */
2885                 wait_event(intf->waitq,
2886                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2887                 intf->null_user_handler = NULL;
2888         } else {
2889                 /* Assume a single IPMB channel at zero. */
2890                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2891                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2892                 intf->curr_channel = IPMI_MAX_CHANNELS;
2893         }
2894 
2895         rv = ipmi_bmc_register(intf, i);
2896 
2897         if (rv == 0)
2898                 rv = add_proc_entries(intf, i);
2899 
2900  out:
2901         if (rv) {
2902                 if (intf->proc_dir)
2903                         remove_proc_entries(intf);
2904                 intf->handlers = NULL;
2905                 list_del_rcu(&intf->link);
2906                 mutex_unlock(&ipmi_interfaces_mutex);
2907                 mutex_unlock(&smi_watchers_mutex);
2908                 synchronize_rcu();
2909                 kref_put(&intf->refcount, intf_free);
2910         } else {
2911                 /*
2912                  * Keep memory order straight for RCU readers.  Make
2913                  * sure everything else is committed to memory before
2914                  * setting intf_num to mark the interface valid.
2915                  */
2916                 smp_wmb();
2917                 intf->intf_num = i;
2918                 mutex_unlock(&ipmi_interfaces_mutex);
2919                 /* After this point the interface is legal to use. */
2920                 call_smi_watchers(i, intf->si_dev);
2921                 mutex_unlock(&smi_watchers_mutex);
2922         }
2923 
2924         return rv;
2925 }
2926 EXPORT_SYMBOL(ipmi_register_smi);
2927 
2928 static void deliver_smi_err_response(ipmi_smi_t intf,
2929                                      struct ipmi_smi_msg *msg,
2930                                      unsigned char err)
2931 {
2932         msg->rsp[0] = msg->data[0] | 4;
2933         msg->rsp[1] = msg->data[1];
2934         msg->rsp[2] = err;
2935         msg->rsp_size = 3;
2936         /* It's an error, so it will never requeue, no need to check return. */
2937         handle_one_recv_msg(intf, msg);
2938 }
2939 
2940 static void cleanup_smi_msgs(ipmi_smi_t intf)
2941 {
2942         int              i;
2943         struct seq_table *ent;
2944         struct ipmi_smi_msg *msg;
2945         struct list_head *entry;
2946         struct list_head tmplist;
2947 
2948         /* Clear out our transmit queues and hold the messages. */
2949         INIT_LIST_HEAD(&tmplist);
2950         list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2951         list_splice_tail(&intf->xmit_msgs, &tmplist);
2952 
2953         /* Current message first, to preserve order */
2954         while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2955                 /* Wait for the message to clear out. */
2956                 schedule_timeout(1);
2957         }
2958 
2959         /* No need for locks, the interface is down. */
2960 
2961         /*
2962          * Return errors for all pending messages in queue and in the
2963          * tables waiting for remote responses.
2964          */
2965         while (!list_empty(&tmplist)) {
2966                 entry = tmplist.next;
2967                 list_del(entry);
2968                 msg = list_entry(entry, struct ipmi_smi_msg, link);
2969                 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2970         }
2971 
2972         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2973                 ent = &(intf->seq_table[i]);
2974                 if (!ent->inuse)
2975                         continue;
2976                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2977         }
2978 }
2979 
2980 int ipmi_unregister_smi(ipmi_smi_t intf)
2981 {
2982         struct ipmi_smi_watcher *w;
2983         int intf_num = intf->intf_num;
2984         ipmi_user_t user;
2985 
2986         mutex_lock(&smi_watchers_mutex);
2987         mutex_lock(&ipmi_interfaces_mutex);
2988         intf->intf_num = -1;
2989         intf->in_shutdown = true;
2990         list_del_rcu(&intf->link);
2991         mutex_unlock(&ipmi_interfaces_mutex);
2992         synchronize_rcu();
2993 
2994         cleanup_smi_msgs(intf);
2995 
2996         /* Clean up the effects of users on the lower-level software. */
2997         mutex_lock(&ipmi_interfaces_mutex);
2998         rcu_read_lock();
2999         list_for_each_entry_rcu(user, &intf->users, link) {
3000                 module_put(intf->handlers->owner);
3001                 if (intf->handlers->dec_usecount)
3002                         intf->handlers->dec_usecount(intf->send_info);
3003         }
3004         rcu_read_unlock();
3005         intf->handlers = NULL;
3006         mutex_unlock(&ipmi_interfaces_mutex);
3007 
3008         remove_proc_entries(intf);
3009         ipmi_bmc_unregister(intf);
3010 
3011         /*
3012          * Call all the watcher interfaces to tell them that
3013          * an interface is gone.
3014          */
3015         list_for_each_entry(w, &smi_watchers, link)
3016                 w->smi_gone(intf_num);
3017         mutex_unlock(&smi_watchers_mutex);
3018 
3019         kref_put(&intf->refcount, intf_free);
3020         return 0;
3021 }
3022 EXPORT_SYMBOL(ipmi_unregister_smi);
3023 
3024 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3025                                    struct ipmi_smi_msg *msg)
3026 {
3027         struct ipmi_ipmb_addr ipmb_addr;
3028         struct ipmi_recv_msg  *recv_msg;
3029 
3030         /*
3031          * This is 11, not 10, because the response must contain a
3032          * completion code.
3033          */
3034         if (msg->rsp_size < 11) {
3035                 /* Message not big enough, just ignore it. */
3036                 ipmi_inc_stat(intf, invalid_ipmb_responses);
3037                 return 0;
3038         }
3039 
3040         if (msg->rsp[2] != 0) {
3041                 /* An error getting the response, just ignore it. */
3042                 return 0;
3043         }
3044 
3045         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3046         ipmb_addr.slave_addr = msg->rsp[6];
3047         ipmb_addr.channel = msg->rsp[3] & 0x0f;
3048         ipmb_addr.lun = msg->rsp[7] & 3;
3049 
3050         /*
3051          * It's a response from a remote entity.  Look up the sequence
3052          * number and handle the response.
3053          */
3054         if (intf_find_seq(intf,
3055                           msg->rsp[7] >> 2,
3056                           msg->rsp[3] & 0x0f,
3057                           msg->rsp[8],
3058                           (msg->rsp[4] >> 2) & (~1),
3059                           (struct ipmi_addr *) &(ipmb_addr),
3060                           &recv_msg)) {
3061                 /*
3062                  * We were unable to find the sequence number,
3063                  * so just nuke the message.
3064                  */
3065                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3066                 return 0;
3067         }
3068 
3069         memcpy(recv_msg->msg_data,
3070                &(msg->rsp[9]),
3071                msg->rsp_size - 9);
3072         /*
3073          * The other fields matched, so no need to set them, except
3074          * for netfn, which needs to be the response that was
3075          * returned, not the request value.
3076          */
3077         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3078         recv_msg->msg.data = recv_msg->msg_data;
3079         recv_msg->msg.data_len = msg->rsp_size - 10;
3080         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3081         ipmi_inc_stat(intf, handled_ipmb_responses);
3082         deliver_response(recv_msg);
3083 
3084         return 0;
3085 }
3086 
3087 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3088                                    struct ipmi_smi_msg *msg)
3089 {
3090         struct cmd_rcvr          *rcvr;
3091         int                      rv = 0;
3092         unsigned char            netfn;
3093         unsigned char            cmd;
3094         unsigned char            chan;
3095         ipmi_user_t              user = NULL;
3096         struct ipmi_ipmb_addr    *ipmb_addr;
3097         struct ipmi_recv_msg     *recv_msg;
3098 
3099         if (msg->rsp_size < 10) {
3100                 /* Message not big enough, just ignore it. */
3101                 ipmi_inc_stat(intf, invalid_commands);
3102                 return 0;
3103         }
3104 
3105         if (msg->rsp[2] != 0) {
3106                 /* An error getting the response, just ignore it. */
3107                 return 0;
3108         }
3109 
3110         netfn = msg->rsp[4] >> 2;
3111         cmd = msg->rsp[8];
3112         chan = msg->rsp[3] & 0xf;
3113 
3114         rcu_read_lock();
3115         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3116         if (rcvr) {
3117                 user = rcvr->user;
3118                 kref_get(&user->refcount);
3119         } else
3120                 user = NULL;
3121         rcu_read_unlock();
3122 
3123         if (user == NULL) {
3124                 /* We didn't find a user, deliver an error response. */
3125                 ipmi_inc_stat(intf, unhandled_commands);
3126 
3127                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3128                 msg->data[1] = IPMI_SEND_MSG_CMD;
3129                 msg->data[2] = msg->rsp[3];
3130                 msg->data[3] = msg->rsp[6];
3131                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3132                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3133                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3134                 /* rqseq/lun */
3135                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3136                 msg->data[8] = msg->rsp[8]; /* cmd */
3137                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3138                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3139                 msg->data_size = 11;
3140 
3141 #ifdef DEBUG_MSGING
3142         {
3143                 int m;
3144                 printk("Invalid command:");
3145                 for (m = 0; m < msg->data_size; m++)
3146                         printk(" %2.2x", msg->data[m]);
3147                 printk("\n");
3148         }
3149 #endif
3150                 rcu_read_lock();
3151                 if (!intf->in_shutdown) {
3152                         smi_send(intf, intf->handlers, msg, 0);
3153                         /*
3154                          * We used the message, so return the value
3155                          * that causes it to not be freed or
3156                          * queued.
3157                          */
3158                         rv = -1;
3159                 }
3160                 rcu_read_unlock();
3161         } else {
3162                 /* Deliver the message to the user. */
3163                 ipmi_inc_stat(intf, handled_commands);
3164 
3165                 recv_msg = ipmi_alloc_recv_msg();
3166                 if (!recv_msg) {
3167                         /*
3168                          * We couldn't allocate memory for the
3169                          * message, so requeue it for handling
3170                          * later.
3171                          */
3172                         rv = 1;
3173                         kref_put(&user->refcount, free_user);
3174                 } else {
3175                         /* Extract the source address from the data. */
3176                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3177                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3178                         ipmb_addr->slave_addr = msg->rsp[6];
3179                         ipmb_addr->lun = msg->rsp[7] & 3;
3180                         ipmb_addr->channel = msg->rsp[3] & 0xf;
3181 
3182                         /*
3183                          * Extract the rest of the message information
3184                          * from the IPMB header.
3185                          */
3186                         recv_msg->user = user;
3187                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3188                         recv_msg->msgid = msg->rsp[7] >> 2;
3189                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3190                         recv_msg->msg.cmd = msg->rsp[8];
3191                         recv_msg->msg.data = recv_msg->msg_data;
3192 
3193                         /*
3194                          * We chop off 10, not 9 bytes because the checksum
3195                          * at the end also needs to be removed.
3196                          */
3197                         recv_msg->msg.data_len = msg->rsp_size - 10;
3198                         memcpy(recv_msg->msg_data,
3199                                &(msg->rsp[9]),
3200                                msg->rsp_size - 10);
3201                         deliver_response(recv_msg);
3202                 }
3203         }
3204 
3205         return rv;
3206 }
3207 
3208 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3209                                   struct ipmi_smi_msg *msg)
3210 {
3211         struct ipmi_lan_addr  lan_addr;
3212         struct ipmi_recv_msg  *recv_msg;
3213 
3214 
3215         /*
3216          * This is 13, not 12, because the response must contain a
3217          * completion code.
3218          */
3219         if (msg->rsp_size < 13) {
3220                 /* Message not big enough, just ignore it. */
3221                 ipmi_inc_stat(intf, invalid_lan_responses);
3222                 return 0;
3223         }
3224 
3225         if (msg->rsp[2] != 0) {
3226                 /* An error getting the response, just ignore it. */
3227                 return 0;
3228         }
3229 
3230         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3231         lan_addr.session_handle = msg->rsp[4];
3232         lan_addr.remote_SWID = msg->rsp[8];
3233         lan_addr.local_SWID = msg->rsp[5];
3234         lan_addr.channel = msg->rsp[3] & 0x0f;
3235         lan_addr.privilege = msg->rsp[3] >> 4;
3236         lan_addr.lun = msg->rsp[9] & 3;
3237 
3238         /*
3239          * It's a response from a remote entity.  Look up the sequence
3240          * number and handle the response.
3241          */
3242         if (intf_find_seq(intf,
3243                           msg->rsp[9] >> 2,
3244                           msg->rsp[3] & 0x0f,
3245                           msg->rsp[10],
3246                           (msg->rsp[6] >> 2) & (~1),
3247                           (struct ipmi_addr *) &(lan_addr),
3248                           &recv_msg)) {
3249                 /*
3250                  * We were unable to find the sequence number,
3251                  * so just nuke the message.
3252                  */
3253                 ipmi_inc_stat(intf, unhandled_lan_responses);
3254                 return 0;
3255         }
3256 
3257         memcpy(recv_msg->msg_data,
3258                &(msg->rsp[11]),
3259                msg->rsp_size - 11);
3260         /*
3261          * The other fields matched, so no need to set them, except
3262          * for netfn, which needs to be the response that was
3263          * returned, not the request value.
3264          */
3265         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3266         recv_msg->msg.data = recv_msg->msg_data;
3267         recv_msg->msg.data_len = msg->rsp_size - 12;
3268         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3269         ipmi_inc_stat(intf, handled_lan_responses);
3270         deliver_response(recv_msg);
3271 
3272         return 0;
3273 }
3274 
3275 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3276                                   struct ipmi_smi_msg *msg)
3277 {
3278         struct cmd_rcvr          *rcvr;
3279         int                      rv = 0;
3280         unsigned char            netfn;
3281         unsigned char            cmd;
3282         unsigned char            chan;
3283         ipmi_user_t              user = NULL;
3284         struct ipmi_lan_addr     *lan_addr;
3285         struct ipmi_recv_msg     *recv_msg;
3286 
3287         if (msg->rsp_size < 12) {
3288                 /* Message not big enough, just ignore it. */
3289                 ipmi_inc_stat(intf, invalid_commands);
3290                 return 0;
3291         }
3292 
3293         if (msg->rsp[2] != 0) {
3294                 /* An error getting the response, just ignore it. */
3295                 return 0;
3296         }
3297 
3298         netfn = msg->rsp[6] >> 2;
3299         cmd = msg->rsp[10];
3300         chan = msg->rsp[3] & 0xf;
3301 
3302         rcu_read_lock();
3303         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3304         if (rcvr) {
3305                 user = rcvr->user;
3306                 kref_get(&user->refcount);
3307         } else
3308                 user = NULL;
3309         rcu_read_unlock();
3310 
3311         if (user == NULL) {
3312                 /* We didn't find a user, just give up. */
3313                 ipmi_inc_stat(intf, unhandled_commands);
3314 
3315                 /*
3316                  * Don't do anything with these messages, just allow
3317                  * them to be freed.
3318                  */
3319                 rv = 0;
3320         } else {
3321                 /* Deliver the message to the user. */
3322                 ipmi_inc_stat(intf, handled_commands);
3323 
3324                 recv_msg = ipmi_alloc_recv_msg();
3325                 if (!recv_msg) {
3326                         /*
3327                          * We couldn't allocate memory for the
3328                          * message, so requeue it for handling later.
3329                          */
3330                         rv = 1;
3331                         kref_put(&user->refcount, free_user);
3332                 } else {
3333                         /* Extract the source address from the data. */
3334                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3335                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3336                         lan_addr->session_handle = msg->rsp[4];
3337                         lan_addr->remote_SWID = msg->rsp[8];
3338                         lan_addr->local_SWID = msg->rsp[5];
3339                         lan_addr->lun = msg->rsp[9] & 3;
3340                         lan_addr->channel = msg->rsp[3] & 0xf;
3341                         lan_addr->privilege = msg->rsp[3] >> 4;
3342 
3343                         /*
3344                          * Extract the rest of the message information
3345                          * from the IPMB header.
3346                          */
3347                         recv_msg->user = user;
3348                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3349                         recv_msg->msgid = msg->rsp[9] >> 2;
3350                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3351                         recv_msg->msg.cmd = msg->rsp[10];
3352                         recv_msg->msg.data = recv_msg->msg_data;
3353 
3354                         /*
3355                          * We chop off 12, not 11 bytes because the checksum
3356                          * at the end also needs to be removed.
3357                          */
3358                         recv_msg->msg.data_len = msg->rsp_size - 12;
3359                         memcpy(recv_msg->msg_data,
3360                                &(msg->rsp[11]),
3361                                msg->rsp_size - 12);
3362                         deliver_response(recv_msg);
3363                 }
3364         }
3365 
3366         return rv;
3367 }
3368 
3369 /*
3370  * This routine will handle "Get Message" command responses with
3371  * channels that use an OEM Medium. The message format belongs to
3372  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3373  * Chapter 22, sections 22.6 and 22.24 for more details.
3374  */
3375 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3376                                   struct ipmi_smi_msg *msg)
3377 {
3378         struct cmd_rcvr       *rcvr;
3379         int                   rv = 0;
3380         unsigned char         netfn;
3381         unsigned char         cmd;
3382         unsigned char         chan;
3383         ipmi_user_t           user = NULL;
3384         struct ipmi_system_interface_addr *smi_addr;
3385         struct ipmi_recv_msg  *recv_msg;
3386 
3387         /*
3388          * We expect the OEM SW to perform error checking
3389          * so we just do some basic sanity checks
3390          */
3391         if (msg->rsp_size < 4) {
3392                 /* Message not big enough, just ignore it. */
3393                 ipmi_inc_stat(intf, invalid_commands);
3394                 return 0;
3395         }
3396 
3397         if (msg->rsp[2] != 0) {
3398                 /* An error getting the response, just ignore it. */
3399                 return 0;
3400         }
3401 
3402         /*
3403          * This is an OEM Message so the OEM needs to know how
3404          * handle the message. We do no interpretation.
3405          */
3406         netfn = msg->rsp[0] >> 2;
3407         cmd = msg->rsp[1];
3408         chan = msg->rsp[3] & 0xf;
3409 
3410         rcu_read_lock();
3411         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3412         if (rcvr) {
3413                 user = rcvr->user;
3414                 kref_get(&user->refcount);
3415         } else
3416                 user = NULL;
3417         rcu_read_unlock();
3418 
3419         if (user == NULL) {
3420                 /* We didn't find a user, just give up. */
3421                 ipmi_inc_stat(intf, unhandled_commands);
3422 
3423                 /*
3424                  * Don't do anything with these messages, just allow
3425                  * them to be freed.
3426                  */
3427 
3428                 rv = 0;
3429         } else {
3430                 /* Deliver the message to the user. */
3431                 ipmi_inc_stat(intf, handled_commands);
3432 
3433                 recv_msg = ipmi_alloc_recv_msg();
3434                 if (!recv_msg) {
3435                         /*
3436                          * We couldn't allocate memory for the
3437                          * message, so requeue it for handling
3438                          * later.
3439                          */
3440                         rv = 1;
3441                         kref_put(&user->refcount, free_user);
3442                 } else {
3443                         /*
3444                          * OEM Messages are expected to be delivered via
3445                          * the system interface to SMS software.  We might
3446                          * need to visit this again depending on OEM
3447                          * requirements
3448                          */
3449                         smi_addr = ((struct ipmi_system_interface_addr *)
3450                                     &(recv_msg->addr));
3451                         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3452                         smi_addr->channel = IPMI_BMC_CHANNEL;
3453                         smi_addr->lun = msg->rsp[0] & 3;
3454 
3455                         recv_msg->user = user;
3456                         recv_msg->user_msg_data = NULL;
3457                         recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3458                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3459                         recv_msg->msg.cmd = msg->rsp[1];
3460                         recv_msg->msg.data = recv_msg->msg_data;
3461 
3462                         /*
3463                          * The message starts at byte 4 which follows the
3464                          * the Channel Byte in the "GET MESSAGE" command
3465                          */
3466                         recv_msg->msg.data_len = msg->rsp_size - 4;
3467                         memcpy(recv_msg->msg_data,
3468                                &(msg->rsp[4]),
3469                                msg->rsp_size - 4);
3470                         deliver_response(recv_msg);
3471                 }
3472         }
3473 
3474         return rv;
3475 }
3476 
3477 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3478                                      struct ipmi_smi_msg  *msg)
3479 {
3480         struct ipmi_system_interface_addr *smi_addr;
3481 
3482         recv_msg->msgid = 0;
3483         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3484         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3485         smi_addr->channel = IPMI_BMC_CHANNEL;
3486         smi_addr->lun = msg->rsp[0] & 3;
3487         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3488         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3489         recv_msg->msg.cmd = msg->rsp[1];
3490         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3491         recv_msg->msg.data = recv_msg->msg_data;
3492         recv_msg->msg.data_len = msg->rsp_size - 3;
3493 }
3494 
3495 static int handle_read_event_rsp(ipmi_smi_t          intf,
3496                                  struct ipmi_smi_msg *msg)
3497 {
3498         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3499         struct list_head     msgs;
3500         ipmi_user_t          user;
3501         int                  rv = 0;
3502         int                  deliver_count = 0;
3503         unsigned long        flags;
3504 
3505         if (msg->rsp_size < 19) {
3506                 /* Message is too small to be an IPMB event. */
3507                 ipmi_inc_stat(intf, invalid_events);
3508                 return 0;
3509         }
3510 
3511         if (msg->rsp[2] != 0) {
3512                 /* An error getting the event, just ignore it. */
3513                 return 0;
3514         }
3515 
3516         INIT_LIST_HEAD(&msgs);
3517 
3518         spin_lock_irqsave(&intf->events_lock, flags);
3519 
3520         ipmi_inc_stat(intf, events);
3521 
3522         /*
3523          * Allocate and fill in one message for every user that is
3524          * getting events.
3525          */
3526         rcu_read_lock();
3527         list_for_each_entry_rcu(user, &intf->users, link) {
3528                 if (!user->gets_events)
3529                         continue;
3530 
3531                 recv_msg = ipmi_alloc_recv_msg();
3532                 if (!recv_msg) {
3533                         rcu_read_unlock();
3534                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3535                                                  link) {
3536                                 list_del(&recv_msg->link);
3537                                 ipmi_free_recv_msg(recv_msg);
3538                         }
3539                         /*
3540                          * We couldn't allocate memory for the
3541                          * message, so requeue it for handling
3542                          * later.
3543                          */
3544                         rv = 1;
3545                         goto out;
3546                 }
3547 
3548                 deliver_count++;
3549 
3550                 copy_event_into_recv_msg(recv_msg, msg);
3551                 recv_msg->user = user;
3552                 kref_get(&user->refcount);
3553                 list_add_tail(&(recv_msg->link), &msgs);
3554         }
3555         rcu_read_unlock();
3556 
3557         if (deliver_count) {
3558                 /* Now deliver all the messages. */
3559                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3560                         list_del(&recv_msg->link);
3561                         deliver_response(recv_msg);
3562                 }
3563         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3564                 /*
3565                  * No one to receive the message, put it in queue if there's
3566                  * not already too many things in the queue.
3567                  */
3568                 recv_msg = ipmi_alloc_recv_msg();
3569                 if (!recv_msg) {
3570                         /*
3571                          * We couldn't allocate memory for the
3572                          * message, so requeue it for handling
3573                          * later.
3574                          */
3575                         rv = 1;
3576                         goto out;
3577                 }
3578 
3579                 copy_event_into_recv_msg(recv_msg, msg);
3580                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3581                 intf->waiting_events_count++;
3582         } else if (!intf->event_msg_printed) {
3583                 /*
3584                  * There's too many things in the queue, discard this
3585                  * message.
3586                  */
3587                 printk(KERN_WARNING PFX "Event queue full, discarding"
3588                        " incoming events\n");
3589                 intf->event_msg_printed = 1;
3590         }
3591 
3592  out:
3593         spin_unlock_irqrestore(&(intf->events_lock), flags);
3594 
3595         return rv;
3596 }
3597 
3598 static int handle_bmc_rsp(ipmi_smi_t          intf,
3599                           struct ipmi_smi_msg *msg)
3600 {
3601         struct ipmi_recv_msg *recv_msg;
3602         struct ipmi_user     *user;
3603 
3604         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3605         if (recv_msg == NULL) {
3606                 printk(KERN_WARNING
3607                        "IPMI message received with no owner. This\n"
3608                        "could be because of a malformed message, or\n"
3609                        "because of a hardware error.  Contact your\n"
3610                        "hardware vender for assistance\n");
3611                 return 0;
3612         }
3613 
3614         user = recv_msg->user;
3615         /* Make sure the user still exists. */
3616         if (user && !user->valid) {
3617                 /* The user for the message went away, so give up. */
3618                 ipmi_inc_stat(intf, unhandled_local_responses);
3619                 ipmi_free_recv_msg(recv_msg);
3620         } else {
3621                 struct ipmi_system_interface_addr *smi_addr;
3622 
3623                 ipmi_inc_stat(intf, handled_local_responses);
3624                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3625                 recv_msg->msgid = msg->msgid;
3626                 smi_addr = ((struct ipmi_system_interface_addr *)
3627                             &(recv_msg->addr));
3628                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3629                 smi_addr->channel = IPMI_BMC_CHANNEL;
3630                 smi_addr->lun = msg->rsp[0] & 3;
3631                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3632                 recv_msg->msg.cmd = msg->rsp[1];
3633                 memcpy(recv_msg->msg_data,
3634                        &(msg->rsp[2]),
3635                        msg->rsp_size - 2);
3636                 recv_msg->msg.data = recv_msg->msg_data;
3637                 recv_msg->msg.data_len = msg->rsp_size - 2;
3638                 deliver_response(recv_msg);
3639         }
3640 
3641         return 0;
3642 }
3643 
3644 /*
3645  * Handle a received message.  Return 1 if the message should be requeued,
3646  * 0 if the message should be freed, or -1 if the message should not
3647  * be freed or requeued.
3648  */
3649 static int handle_one_recv_msg(ipmi_smi_t          intf,
3650                                struct ipmi_smi_msg *msg)
3651 {
3652         int requeue;
3653         int chan;
3654 
3655 #ifdef DEBUG_MSGING
3656         int m;
3657         printk("Recv:");
3658         for (m = 0; m < msg->rsp_size; m++)
3659                 printk(" %2.2x", msg->rsp[m]);
3660         printk("\n");
3661 #endif
3662         if (msg->rsp_size < 2) {
3663                 /* Message is too small to be correct. */
3664                 printk(KERN_WARNING PFX "BMC returned to small a message"
3665                        " for netfn %x cmd %x, got %d bytes\n",
3666                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3667 
3668                 /* Generate an error response for the message. */
3669                 msg->rsp[0] = msg->data[0] | (1 << 2);
3670                 msg->rsp[1] = msg->data[1];
3671                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3672                 msg->rsp_size = 3;
3673         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3674                    || (msg->rsp[1] != msg->data[1])) {
3675                 /*
3676                  * The NetFN and Command in the response is not even
3677                  * marginally correct.
3678                  */
3679                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3680                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3681                        (msg->data[0] >> 2) | 1, msg->data[1],
3682                        msg->rsp[0] >> 2, msg->rsp[1]);
3683 
3684                 /* Generate an error response for the message. */
3685                 msg->rsp[0] = msg->data[0] | (1 << 2);
3686                 msg->rsp[1] = msg->data[1];
3687                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3688                 msg->rsp_size = 3;
3689         }
3690 
3691         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3692             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3693             && (msg->user_data != NULL)) {
3694                 /*
3695                  * It's a response to a response we sent.  For this we
3696                  * deliver a send message response to the user.
3697                  */
3698                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3699 
3700                 requeue = 0;
3701                 if (msg->rsp_size < 2)
3702                         /* Message is too small to be correct. */
3703                         goto out;
3704 
3705                 chan = msg->data[2] & 0x0f;
3706                 if (chan >= IPMI_MAX_CHANNELS)
3707                         /* Invalid channel number */
3708                         goto out;
3709 
3710                 if (!recv_msg)
3711                         goto out;
3712 
3713                 /* Make sure the user still exists. */
3714                 if (!recv_msg->user || !recv_msg->user->valid)
3715                         goto out;
3716 
3717                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3718                 recv_msg->msg.data = recv_msg->msg_data;
3719                 recv_msg->msg.data_len = 1;
3720                 recv_msg->msg_data[0] = msg->rsp[2];
3721                 deliver_response(recv_msg);
3722         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3723                    && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3724                 /* It's from the receive queue. */
3725                 chan = msg->rsp[3] & 0xf;
3726                 if (chan >= IPMI_MAX_CHANNELS) {
3727                         /* Invalid channel number */
3728                         requeue = 0;
3729                         goto out;
3730                 }
3731 
3732                 /*
3733                  * We need to make sure the channels have been initialized.
3734                  * The channel_handler routine will set the "curr_channel"
3735                  * equal to or greater than IPMI_MAX_CHANNELS when all the
3736                  * channels for this interface have been initialized.
3737                  */
3738                 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3739                         requeue = 0; /* Throw the message away */
3740                         goto out;
3741                 }
3742 
3743                 switch (intf->channels[chan].medium) {
3744                 case IPMI_CHANNEL_MEDIUM_IPMB:
3745                         if (msg->rsp[4] & 0x04) {
3746                                 /*
3747                                  * It's a response, so find the
3748                                  * requesting message and send it up.
3749                                  */
3750                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3751                         } else {
3752                                 /*
3753                                  * It's a command to the SMS from some other
3754                                  * entity.  Handle that.
3755                                  */
3756                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3757                         }
3758                         break;
3759 
3760                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3761                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3762                         if (msg->rsp[6] & 0x04) {
3763                                 /*
3764                                  * It's a response, so find the
3765                                  * requesting message and send it up.
3766                                  */
3767                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3768                         } else {
3769                                 /*
3770                                  * It's a command to the SMS from some other
3771                                  * entity.  Handle that.
3772                                  */
3773                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3774                         }
3775                         break;
3776 
3777                 default:
3778                         /* Check for OEM Channels.  Clients had better
3779                            register for these commands. */
3780                         if ((intf->channels[chan].medium
3781                              >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3782                             && (intf->channels[chan].medium
3783                                 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3784                                 requeue = handle_oem_get_msg_cmd(intf, msg);
3785                         } else {
3786                                 /*
3787                                  * We don't handle the channel type, so just
3788                                  * free the message.
3789                                  */
3790                                 requeue = 0;
3791                         }
3792                 }
3793 
3794         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3795                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3796                 /* It's an asynchronous event. */
3797                 requeue = handle_read_event_rsp(intf, msg);
3798         } else {
3799                 /* It's a response from the local BMC. */
3800                 requeue = handle_bmc_rsp(intf, msg);
3801         }
3802 
3803  out:
3804         return requeue;
3805 }
3806 
3807 /*
3808  * If there are messages in the queue or pretimeouts, handle them.
3809  */
3810 static void handle_new_recv_msgs(ipmi_smi_t intf)
3811 {
3812         struct ipmi_smi_msg  *smi_msg;
3813         unsigned long        flags = 0;
3814         int                  rv;
3815         int                  run_to_completion = intf->run_to_completion;
3816 
3817         /* See if any waiting messages need to be processed. */
3818         if (!run_to_completion)
3819                 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3820         while (!list_empty(&intf->waiting_rcv_msgs)) {
3821                 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3822                                      struct ipmi_smi_msg, link);
3823                 list_del(&smi_msg->link);
3824                 if (!run_to_completion)
3825                         spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3826                                                flags);
3827                 rv = handle_one_recv_msg(intf, smi_msg);
3828                 if (!run_to_completion)
3829                         spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3830                 if (rv > 0) {
3831                         /*
3832                          * To preserve message order, quit if we
3833                          * can't handle a message.  Add the message
3834                          * back at the head, this is safe because this
3835                          * tasklet is the only thing that pulls the
3836                          * messages.
3837                          */
3838                         list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
3839                         break;
3840                 } else {
3841                         if (rv == 0)
3842                                 /* Message handled */
3843                                 ipmi_free_smi_msg(smi_msg);
3844                         /* If rv < 0, fatal error, del but don't free. */
3845                 }
3846         }
3847         if (!run_to_completion)
3848                 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3849 
3850         /*
3851          * If the pretimout count is non-zero, decrement one from it and
3852          * deliver pretimeouts to all the users.
3853          */
3854         if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3855                 ipmi_user_t user;
3856 
3857                 rcu_read_lock();
3858                 list_for_each_entry_rcu(user, &intf->users, link) {
3859                         if (user->handler->ipmi_watchdog_pretimeout)
3860                                 user->handler->ipmi_watchdog_pretimeout(
3861                                         user->handler_data);
3862                 }
3863                 rcu_read_unlock();
3864         }
3865 }
3866 
3867 static void smi_recv_tasklet(unsigned long val)
3868 {
3869         unsigned long flags = 0; /* keep us warning-free. */
3870         ipmi_smi_t intf = (ipmi_smi_t) val;
3871         int run_to_completion = intf->run_to_completion;
3872         struct ipmi_smi_msg *newmsg = NULL;
3873 
3874         /*
3875          * Start the next message if available.
3876          *
3877          * Do this here, not in the actual receiver, because we may deadlock
3878          * because the lower layer is allowed to hold locks while calling
3879          * message delivery.
3880          */
3881         if (!run_to_completion)
3882                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3883         if (intf->curr_msg == NULL && !intf->in_shutdown) {
3884                 struct list_head *entry = NULL;
3885 
3886                 /* Pick the high priority queue first. */
3887                 if (!list_empty(&intf->hp_xmit_msgs))
3888                         entry = intf->hp_xmit_msgs.next;
3889                 else if (!list_empty(&intf->xmit_msgs))
3890                         entry = intf->xmit_msgs.next;
3891 
3892                 if (entry) {
3893                         list_del(entry);
3894                         newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3895                         intf->curr_msg = newmsg;
3896                 }
3897         }
3898         if (!run_to_completion)
3899                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3900         if (newmsg)
3901                 intf->handlers->sender(intf->send_info, newmsg);
3902 
3903         handle_new_recv_msgs(intf);
3904 }
3905 
3906 /* Handle a new message from the lower layer. */
3907 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3908                            struct ipmi_smi_msg *msg)
3909 {
3910         unsigned long flags = 0; /* keep us warning-free. */
3911         int run_to_completion = intf->run_to_completion;
3912 
3913         if ((msg->data_size >= 2)
3914             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3915             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3916             && (msg->user_data == NULL)) {
3917 
3918                 if (intf->in_shutdown)
3919                         goto free_msg;
3920 
3921                 /*
3922                  * This is the local response to a command send, start
3923                  * the timer for these.  The user_data will not be
3924                  * NULL if this is a response send, and we will let
3925                  * response sends just go through.
3926                  */
3927 
3928                 /*
3929                  * Check for errors, if we get certain errors (ones
3930                  * that mean basically we can try again later), we
3931                  * ignore them and start the timer.  Otherwise we
3932                  * report the error immediately.
3933                  */
3934                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3935                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3936                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3937                     && (msg->rsp[2] != IPMI_BUS_ERR)
3938                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3939                         int chan = msg->rsp[3] & 0xf;
3940 
3941                         /* Got an error sending the message, handle it. */
3942                         if (chan >= IPMI_MAX_CHANNELS)
3943                                 ; /* This shouldn't happen */
3944                         else if ((intf->channels[chan].medium
3945                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3946                                  || (intf->channels[chan].medium
3947                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3948                                 ipmi_inc_stat(intf, sent_lan_command_errs);
3949                         else
3950                                 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3951                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3952                 } else
3953                         /* The message was sent, start the timer. */
3954                         intf_start_seq_timer(intf, msg->msgid);
3955 
3956 free_msg:
3957                 ipmi_free_smi_msg(msg);
3958         } else {
3959                 /*
3960                  * To preserve message order, we keep a queue and deliver from
3961                  * a tasklet.
3962                  */
3963                 if (!run_to_completion)
3964                         spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3965                 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3966                 if (!run_to_completion)
3967                         spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3968                                                flags);
3969         }
3970 
3971         if (!run_to_completion)
3972                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3973         /*
3974          * We can get an asynchronous event or receive message in addition
3975          * to commands we send.
3976          */
3977         if (msg == intf->curr_msg)
3978                 intf->curr_msg = NULL;
3979         if (!run_to_completion)
3980                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3981 
3982         if (run_to_completion)
3983                 smi_recv_tasklet((unsigned long) intf);
3984         else
3985                 tasklet_schedule(&intf->recv_tasklet);
3986 }
3987 EXPORT_SYMBOL(ipmi_smi_msg_received);
3988 
3989 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3990 {
3991         if (intf->in_shutdown)
3992                 return;
3993 
3994         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3995         tasklet_schedule(&intf->recv_tasklet);
3996 }
3997 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3998 
3999 static struct ipmi_smi_msg *
4000 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
4001                   unsigned char seq, long seqid)
4002 {
4003         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4004         if (!smi_msg)
4005                 /*
4006                  * If we can't allocate the message, then just return, we
4007                  * get 4 retries, so this should be ok.
4008                  */
4009                 return NULL;
4010 
4011         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4012         smi_msg->data_size = recv_msg->msg.data_len;
4013         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4014 
4015 #ifdef DEBUG_MSGING
4016         {
4017                 int m;
4018                 printk("Resend: ");
4019                 for (m = 0; m < smi_msg->data_size; m++)
4020                         printk(" %2.2x", smi_msg->data[m]);
4021                 printk("\n");
4022         }
4023 #endif
4024         return smi_msg;
4025 }
4026 
4027 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4028                               struct list_head *timeouts, long timeout_period,
4029                               int slot, unsigned long *flags,
4030                               unsigned int *waiting_msgs)
4031 {
4032         struct ipmi_recv_msg     *msg;
4033         const struct ipmi_smi_handlers *handlers;
4034 
4035         if (intf->in_shutdown)
4036                 return;
4037 
4038         if (!ent->inuse)
4039                 return;
4040 
4041         ent->timeout -= timeout_period;
4042         if (ent->timeout > 0) {
4043                 (*waiting_msgs)++;
4044                 return;
4045         }
4046 
4047         if (ent->retries_left == 0) {
4048                 /* The message has used all its retries. */
4049                 ent->inuse = 0;
4050                 msg = ent->recv_msg;
4051                 list_add_tail(&msg->link, timeouts);
4052                 if (ent->broadcast)
4053                         ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4054                 else if (is_lan_addr(&ent->recv_msg->addr))
4055                         ipmi_inc_stat(intf, timed_out_lan_commands);
4056                 else
4057                         ipmi_inc_stat(intf, timed_out_ipmb_commands);
4058         } else {
4059                 struct ipmi_smi_msg *smi_msg;
4060                 /* More retries, send again. */
4061 
4062                 (*waiting_msgs)++;
4063 
4064                 /*
4065                  * Start with the max timer, set to normal timer after
4066                  * the message is sent.
4067                  */
4068                 ent->timeout = MAX_MSG_TIMEOUT;
4069                 ent->retries_left--;
4070                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4071                                             ent->seqid);
4072                 if (!smi_msg) {
4073                         if (is_lan_addr(&ent->recv_msg->addr))
4074                                 ipmi_inc_stat(intf,
4075                                               dropped_rexmit_lan_commands);
4076                         else
4077                                 ipmi_inc_stat(intf,
4078                                               dropped_rexmit_ipmb_commands);
4079                         return;
4080                 }
4081 
4082                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4083 
4084                 /*
4085                  * Send the new message.  We send with a zero
4086                  * priority.  It timed out, I doubt time is that
4087                  * critical now, and high priority messages are really
4088                  * only for messages to the local MC, which don't get
4089                  * resent.
4090                  */
4091                 handlers = intf->handlers;
4092                 if (handlers) {
4093                         if (is_lan_addr(&ent->recv_msg->addr))
4094                                 ipmi_inc_stat(intf,
4095                                               retransmitted_lan_commands);
4096                         else
4097                                 ipmi_inc_stat(intf,
4098                                               retransmitted_ipmb_commands);
4099 
4100                         smi_send(intf, handlers, smi_msg, 0);
4101                 } else
4102                         ipmi_free_smi_msg(smi_msg);
4103 
4104                 spin_lock_irqsave(&intf->seq_lock, *flags);
4105         }
4106 }
4107 
4108 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4109 {
4110         struct list_head     timeouts;
4111         struct ipmi_recv_msg *msg, *msg2;
4112         unsigned long        flags;
4113         int                  i;
4114         unsigned int         waiting_msgs = 0;
4115 
4116         /*
4117          * Go through the seq table and find any messages that
4118          * have timed out, putting them in the timeouts
4119          * list.
4120          */
4121         INIT_LIST_HEAD(&timeouts);
4122         spin_lock_irqsave(&intf->seq_lock, flags);
4123         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4124                 check_msg_timeout(intf, &(intf->seq_table[i]),
4125                                   &timeouts, timeout_period, i,
4126                                   &flags, &waiting_msgs);
4127         spin_unlock_irqrestore(&intf->seq_lock, flags);
4128 
4129         list_for_each_entry_safe(msg, msg2, &timeouts, link)
4130                 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4131 
4132         /*
4133          * Maintenance mode handling.  Check the timeout
4134          * optimistically before we claim the lock.  It may
4135          * mean a timeout gets missed occasionally, but that
4136          * only means the timeout gets extended by one period
4137          * in that case.  No big deal, and it avoids the lock
4138          * most of the time.
4139          */
4140         if (intf->auto_maintenance_timeout > 0) {
4141                 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4142                 if (intf->auto_maintenance_timeout > 0) {
4143                         intf->auto_maintenance_timeout
4144                                 -= timeout_period;
4145                         if (!intf->maintenance_mode
4146                             && (intf->auto_maintenance_timeout <= 0)) {
4147                                 intf->maintenance_mode_enable = false;
4148                                 maintenance_mode_update(intf);
4149                         }
4150                 }
4151                 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4152                                        flags);
4153         }
4154 
4155         tasklet_schedule(&intf->recv_tasklet);
4156 
4157         return waiting_msgs;
4158 }
4159 
4160 static void ipmi_request_event(ipmi_smi_t intf)
4161 {
4162         /* No event requests when in maintenance mode. */
4163         if (intf->maintenance_mode_enable)
4164                 return;
4165 
4166         if (!intf->in_shutdown)
4167                 intf->handlers->request_events(intf->send_info);
4168 }
4169 
4170 static struct timer_list ipmi_timer;
4171 
4172 static atomic_t stop_operation;
4173 
4174 static void ipmi_timeout(unsigned long data)
4175 {
4176         ipmi_smi_t intf;
4177         int nt = 0;
4178 
4179         if (atomic_read(&stop_operation))
4180                 return;
4181 
4182         rcu_read_lock();
4183         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4184                 int lnt = 0;
4185 
4186                 if (atomic_read(&intf->event_waiters)) {
4187                         intf->ticks_to_req_ev--;
4188                         if (intf->ticks_to_req_ev == 0) {
4189                                 ipmi_request_event(intf);
4190                                 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4191                         }
4192                         lnt++;
4193                 }
4194 
4195                 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4196 
4197                 lnt = !!lnt;
4198                 if (lnt != intf->last_needs_timer &&
4199                                         intf->handlers->set_need_watch)
4200                         intf->handlers->set_need_watch(intf->send_info, lnt);
4201                 intf->last_needs_timer = lnt;
4202 
4203                 nt += lnt;
4204         }
4205         rcu_read_unlock();
4206 
4207         if (nt)
4208                 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4209 }
4210 
4211 static void need_waiter(ipmi_smi_t intf)
4212 {
4213         /* Racy, but worst case we start the timer twice. */
4214         if (!timer_pending(&ipmi_timer))
4215                 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4216 }
4217 
4218 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4219 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4220 
4221 static void free_smi_msg(struct ipmi_smi_msg *msg)
4222 {
4223         atomic_dec(&smi_msg_inuse_count);
4224         kfree(msg);
4225 }
4226 
4227 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4228 {
4229         struct ipmi_smi_msg *rv;
4230         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4231         if (rv) {
4232                 rv->done = free_smi_msg;
4233                 rv->user_data = NULL;
4234                 atomic_inc(&smi_msg_inuse_count);
4235         }
4236         return rv;
4237 }
4238 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4239 
4240 static void free_recv_msg(struct ipmi_recv_msg *msg)
4241 {
4242         atomic_dec(&recv_msg_inuse_count);
4243         kfree(msg);
4244 }
4245 
4246 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4247 {
4248         struct ipmi_recv_msg *rv;
4249 
4250         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4251         if (rv) {
4252                 rv->user = NULL;
4253                 rv->done = free_recv_msg;
4254                 atomic_inc(&recv_msg_inuse_count);
4255         }
4256         return rv;
4257 }
4258 
4259 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4260 {
4261         if (msg->user)
4262                 kref_put(&msg->user->refcount, free_user);
4263         msg->done(msg);
4264 }
4265 EXPORT_SYMBOL(ipmi_free_recv_msg);
4266 
4267 #ifdef CONFIG_IPMI_PANIC_EVENT
4268 
4269 static atomic_t panic_done_count = ATOMIC_INIT(0);
4270 
4271 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4272 {
4273         atomic_dec(&panic_done_count);
4274 }
4275 
4276 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4277 {
4278         atomic_dec(&panic_done_count);
4279 }
4280 
4281 /*
4282  * Inside a panic, send a message and wait for a response.
4283  */
4284 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4285                                         struct ipmi_addr     *addr,
4286                                         struct kernel_ipmi_msg *msg)
4287 {
4288         struct ipmi_smi_msg  smi_msg;
4289         struct ipmi_recv_msg recv_msg;
4290         int rv;
4291 
4292         smi_msg.done = dummy_smi_done_handler;
4293         recv_msg.done = dummy_recv_done_handler;
4294         atomic_add(2, &panic_done_count);
4295         rv = i_ipmi_request(NULL,
4296                             intf,
4297                             addr,
4298                             0,
4299                             msg,
4300                             intf,
4301                             &smi_msg,
4302                             &recv_msg,
4303                             0,
4304                             intf->channels[0].address,
4305                             intf->channels[0].lun,
4306                             0, 1); /* Don't retry, and don't wait. */
4307         if (rv)
4308                 atomic_sub(2, &panic_done_count);
4309         else if (intf->handlers->flush_messages)
4310                 intf->handlers->flush_messages(intf->send_info);
4311 
4312         while (atomic_read(&panic_done_count) != 0)
4313                 ipmi_poll(intf);
4314 }
4315 
4316 #ifdef CONFIG_IPMI_PANIC_STRING
4317 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4318 {
4319         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4320             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4321             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4322             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4323                 /* A get event receiver command, save it. */
4324                 intf->event_receiver = msg->msg.data[1];
4325                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4326         }
4327 }
4328 
4329 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4330 {
4331         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4332             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4333             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4334             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4335                 /*
4336                  * A get device id command, save if we are an event
4337                  * receiver or generator.
4338                  */
4339                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4340                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4341         }
4342 }
4343 #endif
4344 
4345 static void send_panic_events(char *str)
4346 {
4347         struct kernel_ipmi_msg            msg;
4348         ipmi_smi_t                        intf;
4349         unsigned char                     data[16];
4350         struct ipmi_system_interface_addr *si;
4351         struct ipmi_addr                  addr;
4352 
4353         si = (struct ipmi_system_interface_addr *) &addr;
4354         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4355         si->channel = IPMI_BMC_CHANNEL;
4356         si->lun = 0;
4357 
4358         /* Fill in an event telling that we have failed. */
4359         msg.netfn = 0x04; /* Sensor or Event. */
4360         msg.cmd = 2; /* Platform event command. */
4361         msg.data = data;
4362         msg.data_len = 8;
4363         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4364         data[1] = 0x03; /* This is for IPMI 1.0. */
4365         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4366         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4367         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4368 
4369         /*
4370          * Put a few breadcrumbs in.  Hopefully later we can add more things
4371          * to make the panic events more useful.
4372          */
4373         if (str) {
4374                 data[3] = str[0];
4375                 data[6] = str[1];
4376                 data[7] = str[2];
4377         }
4378 
4379         /* For every registered interface, send the event. */
4380         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4381                 if (!intf->handlers)
4382                         /* Interface is not ready. */
4383                         continue;
4384 
4385                 /* Send the event announcing the panic. */
4386                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4387         }
4388 
4389 #ifdef CONFIG_IPMI_PANIC_STRING
4390         /*
4391          * On every interface, dump a bunch of OEM event holding the
4392          * string.
4393          */
4394         if (!str)
4395                 return;
4396 
4397         /* For every registered interface, send the event. */
4398         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4399                 char                  *p = str;
4400                 struct ipmi_ipmb_addr *ipmb;
4401                 int                   j;
4402 
4403                 if (intf->intf_num == -1)
4404                         /* Interface was not ready yet. */
4405                         continue;
4406 
4407                 /*
4408                  * intf_num is used as an marker to tell if the
4409                  * interface is valid.  Thus we need a read barrier to
4410                  * make sure data fetched before checking intf_num
4411                  * won't be used.
4412                  */
4413                 smp_rmb();
4414 
4415                 /*
4416                  * First job here is to figure out where to send the
4417                  * OEM events.  There's no way in IPMI to send OEM
4418                  * events using an event send command, so we have to
4419                  * find the SEL to put them in and stick them in
4420                  * there.
4421                  */
4422 
4423                 /* Get capabilities from the get device id. */
4424                 intf->local_sel_device = 0;
4425                 intf->local_event_generator = 0;
4426                 intf->event_receiver = 0;
4427 
4428                 /* Request the device info from the local MC. */
4429                 msg.netfn = IPMI_NETFN_APP_REQUEST;
4430                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4431                 msg.data = NULL;
4432                 msg.data_len = 0;
4433                 intf->null_user_handler = device_id_fetcher;
4434                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4435 
4436                 if (intf->local_event_generator) {
4437                         /* Request the event receiver from the local MC. */
4438                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4439                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4440                         msg.data = NULL;
4441                         msg.data_len = 0;
4442                         intf->null_user_handler = event_receiver_fetcher;
4443                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4444                 }
4445                 intf->null_user_handler = NULL;
4446 
4447                 /*
4448                  * Validate the event receiver.  The low bit must not
4449                  * be 1 (it must be a valid IPMB address), it cannot
4450                  * be zero, and it must not be my address.
4451                  */
4452                 if (((intf->event_receiver & 1) == 0)
4453                     && (intf->event_receiver != 0)
4454                     && (intf->event_receiver != intf->channels[0].address)) {
4455                         /*
4456                          * The event receiver is valid, send an IPMB
4457                          * message.
4458                          */
4459                         ipmb = (struct ipmi_ipmb_addr *) &addr;
4460                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4461                         ipmb->channel = 0; /* FIXME - is this right? */
4462                         ipmb->lun = intf->event_receiver_lun;
4463                         ipmb->slave_addr = intf->event_receiver;
4464                 } else if (intf->local_sel_device) {
4465                         /*
4466                          * The event receiver was not valid (or was
4467                          * me), but I am an SEL device, just dump it
4468                          * in my SEL.
4469                          */
4470                         si = (struct ipmi_system_interface_addr *) &addr;
4471                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4472                         si->channel = IPMI_BMC_CHANNEL;
4473                         si->lun = 0;
4474                 } else
4475                         continue; /* No where to send the event. */
4476 
4477                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4478                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4479                 msg.data = data;
4480                 msg.data_len = 16;
4481 
4482                 j = 0;
4483                 while (*p) {
4484                         int size = strlen(p);
4485 
4486                         if (size > 11)
4487                                 size = 11;
4488                         data[0] = 0;
4489                         data[1] = 0;
4490                         data[2] = 0xf0; /* OEM event without timestamp. */
4491                         data[3] = intf->channels[0].address;
4492                         data[4] = j++; /* sequence # */
4493                         /*
4494                          * Always give 11 bytes, so strncpy will fill
4495                          * it with zeroes for me.
4496                          */
4497                         strncpy(data+5, p, 11);
4498                         p += size;
4499 
4500                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4501                 }
4502         }
4503 #endif /* CONFIG_IPMI_PANIC_STRING */
4504 }
4505 #endif /* CONFIG_IPMI_PANIC_EVENT */
4506 
4507 static int has_panicked;
4508 
4509 static int panic_event(struct notifier_block *this,
4510                        unsigned long         event,
4511                        void                  *ptr)
4512 {
4513         ipmi_smi_t intf;
4514 
4515         if (has_panicked)
4516                 return NOTIFY_DONE;
4517         has_panicked = 1;
4518 
4519         /* For every registered interface, set it to run to completion. */
4520         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4521                 if (!intf->handlers)
4522                         /* Interface is not ready. */
4523                         continue;
4524 
4525                 /*
4526                  * If we were interrupted while locking xmit_msgs_lock or
4527                  * waiting_rcv_msgs_lock, the corresponding list may be
4528                  * corrupted.  In this case, drop items on the list for
4529                  * the safety.
4530                  */
4531                 if (!spin_trylock(&intf->xmit_msgs_lock)) {
4532                         INIT_LIST_HEAD(&intf->xmit_msgs);
4533                         INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4534                 } else
4535                         spin_unlock(&intf->xmit_msgs_lock);
4536 
4537                 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
4538                         INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
4539                 else
4540                         spin_unlock(&intf->waiting_rcv_msgs_lock);
4541 
4542                 intf->run_to_completion = 1;
4543                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4544         }
4545 
4546 #ifdef CONFIG_IPMI_PANIC_EVENT
4547         send_panic_events(ptr);
4548 #endif
4549 
4550         return NOTIFY_DONE;
4551 }
4552 
4553 static struct notifier_block panic_block = {
4554         .notifier_call  = panic_event,
4555         .next           = NULL,
4556         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4557 };
4558 
4559 static int ipmi_init_msghandler(void)
4560 {
4561         int rv;
4562 
4563         if (initialized)
4564                 return 0;
4565 
4566         rv = driver_register(&ipmidriver.driver);
4567         if (rv) {
4568                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4569                 return rv;
4570         }
4571 
4572         printk(KERN_INFO "ipmi message handler version "
4573                IPMI_DRIVER_VERSION "\n");
4574 
4575 #ifdef CONFIG_PROC_FS
4576         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4577         if (!proc_ipmi_root) {
4578             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4579             driver_unregister(&ipmidriver.driver);
4580             return -ENOMEM;
4581         }
4582 
4583 #endif /* CONFIG_PROC_FS */
4584 
4585         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4586         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4587 
4588         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4589 
4590         initialized = 1;
4591 
4592         return 0;
4593 }
4594 
4595 static int __init ipmi_init_msghandler_mod(void)
4596 {
4597         ipmi_init_msghandler();
4598         return 0;
4599 }
4600 
4601 static void __exit cleanup_ipmi(void)
4602 {
4603         int count;
4604 
4605         if (!initialized)
4606                 return;
4607 
4608         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4609 
4610         /*
4611          * This can't be called if any interfaces exist, so no worry
4612          * about shutting down the interfaces.
4613          */
4614 
4615         /*
4616          * Tell the timer to stop, then wait for it to stop.  This
4617          * avoids problems with race conditions removing the timer
4618          * here.
4619          */
4620         atomic_inc(&stop_operation);
4621         del_timer_sync(&ipmi_timer);
4622 
4623 #ifdef CONFIG_PROC_FS
4624         proc_remove(proc_ipmi_root);
4625 #endif /* CONFIG_PROC_FS */
4626 
4627         driver_unregister(&ipmidriver.driver);
4628 
4629         initialized = 0;
4630 
4631         /* Check for buffer leaks. */
4632         count = atomic_read(&smi_msg_inuse_count);
4633         if (count != 0)
4634                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4635                        count);
4636         count = atomic_read(&recv_msg_inuse_count);
4637         if (count != 0)
4638                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4639                        count);
4640 }
4641 module_exit(cleanup_ipmi);
4642 
4643 module_init(ipmi_init_msghandler_mod);
4644 MODULE_LICENSE("GPL");
4645 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4646 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4647                    " interface.");
4648 MODULE_VERSION(IPMI_DRIVER_VERSION);
4649 MODULE_SOFTDEP("post: ipmi_devintf");
4650 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us