Version:  2.0.40 2.2.26 2.4.37 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7

Linux/drivers/atm/firestream.c

  1 
  2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
  3  *                            FireStream  50 (MB86695) device driver 
  4  */
  5  
  6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl 
  7  * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA 
  8  * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd 
  9  */
 10 
 11 /*
 12   This program is free software; you can redistribute it and/or modify
 13   it under the terms of the GNU General Public License as published by
 14   the Free Software Foundation; either version 2 of the License, or
 15   (at your option) any later version.
 16 
 17   This program is distributed in the hope that it will be useful,
 18   but WITHOUT ANY WARRANTY; without even the implied warranty of
 19   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 20   GNU General Public License for more details.
 21 
 22   You should have received a copy of the GNU General Public License
 23   along with this program; if not, write to the Free Software
 24   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 25 
 26   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
 27   system and in the file COPYING in the Linux kernel source.
 28 */
 29 
 30 
 31 #include <linux/module.h>
 32 #include <linux/sched.h>
 33 #include <linux/kernel.h>
 34 #include <linux/mm.h>
 35 #include <linux/pci.h>
 36 #include <linux/poison.h>
 37 #include <linux/errno.h>
 38 #include <linux/atm.h>
 39 #include <linux/atmdev.h>
 40 #include <linux/sonet.h>
 41 #include <linux/skbuff.h>
 42 #include <linux/netdevice.h>
 43 #include <linux/delay.h>
 44 #include <linux/ioport.h> /* for request_region */
 45 #include <linux/uio.h>
 46 #include <linux/init.h>
 47 #include <linux/interrupt.h>
 48 #include <linux/capability.h>
 49 #include <linux/bitops.h>
 50 #include <linux/slab.h>
 51 #include <asm/byteorder.h>
 52 #include <asm/string.h>
 53 #include <asm/io.h>
 54 #include <linux/atomic.h>
 55 #include <asm/uaccess.h>
 56 #include <linux/wait.h>
 57 
 58 #include "firestream.h"
 59 
 60 static int loopback = 0;
 61 static int num=0x5a;
 62 
 63 /* According to measurements (but they look suspicious to me!) done in
 64  * '97, 37% of the packets are one cell in size. So it pays to have
 65  * buffers allocated at that size. A large jump in percentage of
 66  * packets occurs at packets around 536 bytes in length. So it also
 67  * pays to have those pre-allocated. Unfortunately, we can't fully
 68  * take advantage of this as the majority of the packets is likely to
 69  * be TCP/IP (As where obviously the measurement comes from) There the
 70  * link would be opened with say a 1500 byte MTU, and we can't handle
 71  * smaller buffers more efficiently than the larger ones. -- REW
 72  */
 73 
 74 /* Due to the way Linux memory management works, specifying "576" as
 75  * an allocation size here isn't going to help. They are allocated
 76  * from 1024-byte regions anyway. With the size of the sk_buffs (quite
 77  * large), it doesn't pay to allocate the smallest size (64) -- REW */
 78 
 79 /* This is all guesswork. Hard numbers to back this up or disprove this, 
 80  * are appreciated. -- REW */
 81 
 82 /* The last entry should be about 64k. However, the "buffer size" is
 83  * passed to the chip in a 16 bit field. I don't know how "65536"
 84  * would be interpreted. -- REW */
 85 
 86 #define NP FS_NR_FREE_POOLS
 87 static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
 88 /* log2:                 7     8     9    10    11    12    14     16 */
 89 
 90 #if 0
 91 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
 92 #else
 93 /* debug */
 94 static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
 95 #endif
 96 /* log2:                 10    10    9    8     7     6     5      5  */
 97 /* sumlog2:              17    18    18   18    18    18    19     21 */
 98 /* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
 99 /* tot mem: almost 4M */
100 
101 /* NP is shorter, so that it fits on a single line. */
102 #undef NP
103 
104 
105 /* Small hardware gotcha:
106 
107    The FS50 CAM (VP/VC match registers) always take the lowest channel
108    number that matches. This is not a problem.
109 
110    However, they also ignore whether the channel is enabled or
111    not. This means that if you allocate channel 0 to 1.2 and then
112    channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113    match channel for channel 0 will "steal" the traffic from channel
114    1, even if you correctly disable channel 0.
115 
116    Workaround: 
117 
118    - When disabling channels, write an invalid VP/VC value to the
119    match register. (We use 0xffffffff, which in the worst case 
120    matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121    anything as some "when not in use, program to 0" bits are now
122    programmed to 1...)
123 
124    - Don't initialize the match registers to 0, as 0.0 is a valid
125    channel.
126 */
127 
128 
129 /* Optimization hints and tips.
130 
131    The FireStream chips are very capable of reducing the amount of
132    "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133    action. You could try to minimize this a bit. 
134 
135    Besides that, the userspace->kernel copy and the PCI bus are the
136    performance limiting issues for this driver.
137 
138    You could queue up a bunch of outgoing packets without telling the
139    FireStream. I'm not sure that's going to win you much though. The
140    Linux layer won't tell us in advance when it's not going to give us
141    any more packets in a while. So this is tricky to implement right without
142    introducing extra delays. 
143   
144    -- REW
145  */
146 
147 
148 
149 
150 /* The strings that define what the RX queue entry is all about. */
151 /* Fujitsu: Please tell me which ones can have a pointer to a 
152    freepool descriptor! */
153 static char *res_strings[] = {
154         "RX OK: streaming not EOP", 
155         "RX OK: streaming EOP", 
156         "RX OK: Single buffer packet", 
157         "RX OK: packet mode", 
158         "RX OK: F4 OAM (end to end)", 
159         "RX OK: F4 OAM (Segment)", 
160         "RX OK: F5 OAM (end to end)", 
161         "RX OK: F5 OAM (Segment)", 
162         "RX OK: RM cell", 
163         "RX OK: TRANSP cell", 
164         "RX OK: TRANSPC cell", 
165         "Unmatched cell", 
166         "reserved 12", 
167         "reserved 13", 
168         "reserved 14", 
169         "Unrecognized cell", 
170         "reserved 16", 
171         "reassembly abort: AAL5 abort", 
172         "packet purged", 
173         "packet ageing timeout", 
174         "channel ageing timeout", 
175         "calculated length error", 
176         "programmed length limit error", 
177         "aal5 crc32 error", 
178         "oam transp or transpc crc10 error", 
179         "reserved 25", 
180         "reserved 26", 
181         "reserved 27", 
182         "reserved 28", 
183         "reserved 29", 
184         "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
185         "reassembly abort: no buffers", 
186         "receive buffer overflow", 
187         "change in GFC", 
188         "receive buffer full", 
189         "low priority discard - no receive descriptor", 
190         "low priority discard - missing end of packet", 
191         "reserved 37",
192         "reserved 38",
193         "reserved 39",
194         "reseverd 40",
195         "reserved 41", 
196         "reserved 42", 
197         "reserved 43", 
198         "reserved 44", 
199         "reserved 45", 
200         "reserved 46", 
201         "reserved 47", 
202         "reserved 48", 
203         "reserved 49", 
204         "reserved 50", 
205         "reserved 51", 
206         "reserved 52", 
207         "reserved 53", 
208         "reserved 54", 
209         "reserved 55", 
210         "reserved 56", 
211         "reserved 57", 
212         "reserved 58", 
213         "reserved 59", 
214         "reserved 60", 
215         "reserved 61", 
216         "reserved 62", 
217         "reserved 63", 
218 };  
219 
220 static char *irq_bitname[] = {
221         "LPCO",
222         "DPCO",
223         "RBRQ0_W",
224         "RBRQ1_W",
225         "RBRQ2_W",
226         "RBRQ3_W",
227         "RBRQ0_NF",
228         "RBRQ1_NF",
229         "RBRQ2_NF",
230         "RBRQ3_NF",
231         "BFP_SC",
232         "INIT",
233         "INIT_ERR",
234         "USCEO",
235         "UPEC0",
236         "VPFCO",
237         "CRCCO",
238         "HECO",
239         "TBRQ_W",
240         "TBRQ_NF",
241         "CTPQ_E",
242         "GFC_C0",
243         "PCI_FTL",
244         "CSQ_W",
245         "CSQ_NF",
246         "EXT_INT",
247         "RXDMA_S"
248 };
249 
250 
251 #define PHY_EOF -1
252 #define PHY_CLEARALL -2
253 
254 struct reginit_item {
255         int reg, val;
256 };
257 
258 
259 static struct reginit_item PHY_NTC_INIT[] = {
260         { PHY_CLEARALL, 0x40 }, 
261         { 0x12,  0x0001 },
262         { 0x13,  0x7605 },
263         { 0x1A,  0x0001 },
264         { 0x1B,  0x0005 },
265         { 0x38,  0x0003 },
266         { 0x39,  0x0006 },   /* changed here to make loopback */
267         { 0x01,  0x5262 },
268         { 0x15,  0x0213 },
269         { 0x00,  0x0003 },
270         { PHY_EOF, 0},    /* -1 signals end of list */
271 };
272 
273 
274 /* Safetyfeature: If the card interrupts more than this number of times
275    in a jiffy (1/100th of a second) then we just disable the interrupt and
276    print a message. This prevents the system from hanging. 
277 
278    150000 packets per second is close to the limit a PC is going to have
279    anyway. We therefore have to disable this for production. -- REW */
280 #undef IRQ_RATE_LIMIT // 100
281 
282 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
283    that great without interrupts. -- REW */
284 #undef FS_POLL_FREQ // 100
285 
286 /* 
287    This driver can spew a whole lot of debugging output at you. If you
288    need maximum performance, you should disable the DEBUG define. To
289    aid in debugging in the field, I'm leaving the compile-time debug
290    features enabled, and disable them "runtime". That allows me to
291    instruct people with problems to enable debugging without requiring
292    them to recompile... -- REW
293 */
294 #define DEBUG
295 
296 #ifdef DEBUG
297 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
298 #else
299 #define fs_dprintk(f, str...) /* nothing */
300 #endif
301 
302 
303 static int fs_keystream = 0;
304 
305 #ifdef DEBUG
306 /* I didn't forget to set this to zero before shipping. Hit me with a stick 
307    if you get this with the debug default not set to zero again. -- REW */
308 static int fs_debug = 0;
309 #else
310 #define fs_debug 0
311 #endif
312 
313 #ifdef MODULE
314 #ifdef DEBUG 
315 module_param(fs_debug, int, 0644);
316 #endif
317 module_param(loopback, int, 0);
318 module_param(num, int, 0);
319 module_param(fs_keystream, int, 0);
320 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
321 #endif
322 
323 
324 #define FS_DEBUG_FLOW    0x00000001
325 #define FS_DEBUG_OPEN    0x00000002
326 #define FS_DEBUG_QUEUE   0x00000004
327 #define FS_DEBUG_IRQ     0x00000008
328 #define FS_DEBUG_INIT    0x00000010
329 #define FS_DEBUG_SEND    0x00000020
330 #define FS_DEBUG_PHY     0x00000040
331 #define FS_DEBUG_CLEANUP 0x00000080
332 #define FS_DEBUG_QOS     0x00000100
333 #define FS_DEBUG_TXQ     0x00000200
334 #define FS_DEBUG_ALLOC   0x00000400
335 #define FS_DEBUG_TXMEM   0x00000800
336 #define FS_DEBUG_QSIZE   0x00001000
337 
338 
339 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
340 #define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
341 
342 
343 static struct fs_dev *fs_boards = NULL;
344 
345 #ifdef DEBUG
346 
347 static void my_hd (void *addr, int len)
348 {
349         int j, ch;
350         unsigned char *ptr = addr;
351 
352         while (len > 0) {
353                 printk ("%p ", ptr);
354                 for (j=0;j < ((len < 16)?len:16);j++) {
355                         printk ("%02x %s", ptr[j], (j==7)?" ":"");
356                 }
357                 for (  ;j < 16;j++) {
358                         printk ("   %s", (j==7)?" ":"");
359                 }
360                 for (j=0;j < ((len < 16)?len:16);j++) {
361                         ch = ptr[j];
362                         printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
363                 }
364                 printk ("\n");
365                 ptr += 16;
366                 len -= 16;
367         }
368 }
369 #else /* DEBUG */
370 static void my_hd (void *addr, int len){}
371 #endif /* DEBUG */
372 
373 /********** free an skb (as per ATM device driver documentation) **********/
374 
375 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
376  * I copied it over from the ambassador driver. -- REW */
377 
378 static inline void fs_kfree_skb (struct sk_buff * skb) 
379 {
380         if (ATM_SKB(skb)->vcc->pop)
381                 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
382         else
383                 dev_kfree_skb_any (skb);
384 }
385 
386 
387 
388 
389 /* It seems the ATM forum recommends this horribly complicated 16bit
390  * floating point format. Turns out the Ambassador uses the exact same
391  * encoding. I just copied it over. If Mitch agrees, I'll move it over
392  * to the atm_misc file or something like that. (and remove it from 
393  * here and the ambassador driver) -- REW
394  */
395 
396 /* The good thing about this format is that it is monotonic. So, 
397    a conversion routine need not be very complicated. To be able to
398    round "nearest" we need to take along a few extra bits. Lets
399    put these after 16 bits, so that we can just return the top 16
400    bits of the 32bit number as the result:
401 
402    int mr (unsigned int rate, int r) 
403      {
404      int e = 16+9;
405      static int round[4]={0, 0, 0xffff, 0x8000};
406      if (!rate) return 0;
407      while (rate & 0xfc000000) {
408        rate >>= 1;
409        e++;
410      }
411      while (! (rate & 0xfe000000)) {
412        rate <<= 1;
413        e--;
414      }
415 
416 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
417      rate &= ~0x02000000;
418 // Next add in the exponent
419      rate |= e << (16+9);
420 // And perform the rounding:
421      return (rate + round[r]) >> 16;
422    }
423 
424    14 lines-of-code. Compare that with the 120 that the Ambassador
425    guys needed. (would be 8 lines shorter if I'd try to really reduce
426    the number of lines:
427 
428    int mr (unsigned int rate, int r) 
429    {
430      int e = 16+9;
431      static int round[4]={0, 0, 0xffff, 0x8000};
432      if (!rate) return 0;
433      for (;  rate & 0xfc000000 ;rate >>= 1, e++);
434      for (;!(rate & 0xfe000000);rate <<= 1, e--);
435      return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
436    }
437 
438    Exercise for the reader: Remove one more line-of-code, without
439    cheating. (Just joining two lines is cheating). (I know it's
440    possible, don't think you've beat me if you found it... If you
441    manage to lose two lines or more, keep me updated! ;-)
442 
443    -- REW */
444 
445 
446 #define ROUND_UP      1
447 #define ROUND_DOWN    2
448 #define ROUND_NEAREST 3
449 /********** make rate (not quite as much fun as Horizon) **********/
450 
451 static int make_rate(unsigned int rate, int r,
452                       u16 *bits, unsigned int *actual)
453 {
454         unsigned char exp = -1; /* hush gcc */
455         unsigned int man = -1;  /* hush gcc */
456   
457         fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
458   
459         /* rates in cells per second, ITU format (nasty 16-bit floating-point)
460            given 5-bit e and 9-bit m:
461            rate = EITHER (1+m/2^9)*2^e    OR 0
462            bits = EITHER 1<<14 | e<<9 | m OR 0
463            (bit 15 is "reserved", bit 14 "non-zero")
464            smallest rate is 0 (special representation)
465            largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
466            smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
467            simple algorithm:
468            find position of top bit, this gives e
469            remove top bit and shift (rounding if feeling clever) by 9-e
470         */
471         /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
472            representable. // This should move into the ambassador driver
473            when properly merged. -- REW */
474   
475         if (rate > 0xffc00000U) {
476                 /* larger than largest representable rate */
477     
478                 if (r == ROUND_UP) {
479                         return -EINVAL;
480                 } else {
481                         exp = 31;
482                         man = 511;
483                 }
484     
485         } else if (rate) {
486                 /* representable rate */
487     
488                 exp = 31;
489                 man = rate;
490     
491                 /* invariant: rate = man*2^(exp-31) */
492                 while (!(man & (1<<31))) {
493                         exp = exp - 1;
494                         man = man<<1;
495                 }
496     
497                 /* man has top bit set
498                    rate = (2^31+(man-2^31))*2^(exp-31)
499                    rate = (1+(man-2^31)/2^31)*2^exp 
500                 */
501                 man = man<<1;
502                 man &= 0xffffffffU; /* a nop on 32-bit systems */
503                 /* rate = (1+man/2^32)*2^exp
504     
505                    exp is in the range 0 to 31, man is in the range 0 to 2^32-1
506                    time to lose significance... we want m in the range 0 to 2^9-1
507                    rounding presents a minor problem... we first decide which way
508                    we are rounding (based on given rounding direction and possibly
509                    the bits of the mantissa that are to be discarded).
510                 */
511 
512                 switch (r) {
513                 case ROUND_DOWN: {
514                         /* just truncate */
515                         man = man>>(32-9);
516                         break;
517                 }
518                 case ROUND_UP: {
519                         /* check all bits that we are discarding */
520                         if (man & (~0U>>9)) {
521                                 man = (man>>(32-9)) + 1;
522                                 if (man == (1<<9)) {
523                                         /* no need to check for round up outside of range */
524                                         man = 0;
525                                         exp += 1;
526                                 }
527                         } else {
528                                 man = (man>>(32-9));
529                         }
530                         break;
531                 }
532                 case ROUND_NEAREST: {
533                         /* check msb that we are discarding */
534                         if (man & (1<<(32-9-1))) {
535                                 man = (man>>(32-9)) + 1;
536                                 if (man == (1<<9)) {
537                                         /* no need to check for round up outside of range */
538                                         man = 0;
539                                         exp += 1;
540                                 }
541                         } else {
542                                 man = (man>>(32-9));
543                         }
544                         break;
545                 }
546                 }
547     
548         } else {
549                 /* zero rate - not representable */
550     
551                 if (r == ROUND_DOWN) {
552                         return -EINVAL;
553                 } else {
554                         exp = 0;
555                         man = 0;
556                 }
557         }
558   
559         fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
560   
561         if (bits)
562                 *bits = /* (1<<14) | */ (exp<<9) | man;
563   
564         if (actual)
565                 *actual = (exp >= 9)
566                         ? (1 << exp) + (man << (exp-9))
567                         : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
568   
569         return 0;
570 }
571 
572 
573 
574 
575 /* FireStream access routines */
576 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
577    certain registers or to just log all accesses. */
578 
579 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
580 {
581         writel (val, dev->base + offset);
582 }
583 
584 
585 static inline u32  read_fs (struct fs_dev *dev, int offset)
586 {
587         return readl (dev->base + offset);
588 }
589 
590 
591 
592 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
593 {
594         return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
595 }
596 
597 
598 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
599 {
600         u32 wp;
601         struct FS_QENTRY *cqe;
602 
603         /* XXX Sanity check: the write pointer can be checked to be 
604            still the same as the value passed as qe... -- REW */
605         /*  udelay (5); */
606         while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
607                 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n", 
608                             q->offset);
609                 schedule ();
610         }
611 
612         wp &= ~0xf;
613         cqe = bus_to_virt (wp);
614         if (qe != cqe) {
615                 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
616         }
617 
618         write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
619 
620         {
621                 static int c;
622                 if (!(c++ % 100))
623                         {
624                                 int rp, wp;
625                                 rp =  read_fs (dev, Q_RP(q->offset));
626                                 wp =  read_fs (dev, Q_WP(q->offset));
627                                 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n", 
628                                             q->offset, rp, wp, wp-rp);
629                         }
630         }
631 }
632 
633 #ifdef DEBUG_EXTRA
634 static struct FS_QENTRY pq[60];
635 static int qp;
636 
637 static struct FS_BPENTRY dq[60];
638 static int qd;
639 static void *da[60];
640 #endif 
641 
642 static void submit_queue (struct fs_dev *dev, struct queue *q, 
643                           u32 cmd, u32 p1, u32 p2, u32 p3)
644 {
645         struct FS_QENTRY *qe;
646 
647         qe = get_qentry (dev, q);
648         qe->cmd = cmd;
649         qe->p0 = p1;
650         qe->p1 = p2;
651         qe->p2 = p3;
652         submit_qentry (dev,  q, qe);
653 
654 #ifdef DEBUG_EXTRA
655         pq[qp].cmd = cmd;
656         pq[qp].p0 = p1;
657         pq[qp].p1 = p2;
658         pq[qp].p2 = p3;
659         qp++;
660         if (qp >= 60) qp = 0;
661 #endif
662 }
663 
664 /* Test the "other" way one day... -- REW */
665 #if 1
666 #define submit_command submit_queue
667 #else
668 
669 static void submit_command (struct fs_dev *dev, struct queue *q, 
670                             u32 cmd, u32 p1, u32 p2, u32 p3)
671 {
672         write_fs (dev, CMDR0, cmd);
673         write_fs (dev, CMDR1, p1);
674         write_fs (dev, CMDR2, p2);
675         write_fs (dev, CMDR3, p3);
676 }
677 #endif
678 
679 
680 
681 static void process_return_queue (struct fs_dev *dev, struct queue *q)
682 {
683         long rq;
684         struct FS_QENTRY *qe;
685         void *tc;
686   
687         while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
688                 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq); 
689                 qe = bus_to_virt (rq);
690     
691                 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n", 
692                             qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
693 
694                 switch (STATUS_CODE (qe)) {
695                 case 5:
696                         tc = bus_to_virt (qe->p0);
697                         fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
698                         kfree (tc);
699                         break;
700                 }
701     
702                 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
703         }
704 }
705 
706 
707 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
708 {
709         long rq;
710         long tmp;
711         struct FS_QENTRY *qe;
712         struct sk_buff *skb;
713         struct FS_BPENTRY *td;
714 
715         while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
716                 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq); 
717                 qe = bus_to_virt (rq);
718     
719                 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n", 
720                             qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
721 
722                 if (STATUS_CODE (qe) != 2)
723                         fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n", 
724                                     qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
725 
726 
727                 switch (STATUS_CODE (qe)) {
728                 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
729                         /* Fall through */
730                 case 0x02:
731                         /* Process a real txdone entry. */
732                         tmp = qe->p0;
733                         if (tmp & 0x0f)
734                                 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
735                         tmp &= ~0x0f;
736                         td = bus_to_virt (tmp);
737 
738                         fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n", 
739                                     td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
740       
741                         skb = td->skb;
742                         if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
743                                 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
744                                 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
745                         }
746                         td->dev->ntxpckts--;
747 
748                         {
749                                 static int c=0;
750         
751                                 if (!(c++ % 100)) {
752                                         fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
753                                 }
754                         }
755 
756                         atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
757 
758                         fs_dprintk (FS_DEBUG_TXMEM, "i");
759                         fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
760                         fs_kfree_skb (skb);
761 
762                         fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td); 
763                         memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
764                         kfree (td);
765                         break;
766                 default:
767                         /* Here we get the tx purge inhibit command ... */
768                         /* Action, I believe, is "don't do anything". -- REW */
769                         ;
770                 }
771     
772                 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
773         }
774 }
775 
776 
777 static void process_incoming (struct fs_dev *dev, struct queue *q)
778 {
779         long rq;
780         struct FS_QENTRY *qe;
781         struct FS_BPENTRY *pe;    
782         struct sk_buff *skb;
783         unsigned int channo;
784         struct atm_vcc *atm_vcc;
785 
786         while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
787                 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq); 
788                 qe = bus_to_virt (rq);
789     
790                 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ", 
791                             qe->cmd, qe->p0, qe->p1, qe->p2);
792 
793                 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n", 
794                             STATUS_CODE (qe), 
795                             res_strings[STATUS_CODE(qe)]);
796 
797                 pe = bus_to_virt (qe->p0);
798                 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n", 
799                             pe->flags, pe->next, pe->bsa, pe->aal_bufsize, 
800                             pe->skb, pe->fp);
801       
802                 channo = qe->cmd & 0xffff;
803 
804                 if (channo < dev->nchannels)
805                         atm_vcc = dev->atm_vccs[channo];
806                 else
807                         atm_vcc = NULL;
808 
809                 /* Single buffer packet */
810                 switch (STATUS_CODE (qe)) {
811                 case 0x1:
812                         /* Fall through for streaming mode */
813                 case 0x2:/* Packet received OK.... */
814                         if (atm_vcc) {
815                                 skb = pe->skb;
816                                 pe->fp->n--;
817 #if 0
818                                 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
819                                 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
820 #endif
821                                 skb_put (skb, qe->p1 & 0xffff); 
822                                 ATM_SKB(skb)->vcc = atm_vcc;
823                                 atomic_inc(&atm_vcc->stats->rx);
824                                 __net_timestamp(skb);
825                                 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
826                                 atm_vcc->push (atm_vcc, skb);
827                                 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
828                                 kfree (pe);
829                         } else {
830                                 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
831                         }
832                         break;
833                 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
834                              has been consumed and needs to be processed. -- REW */
835                         if (qe->p1 & 0xffff) {
836                                 pe = bus_to_virt (qe->p0);
837                                 pe->fp->n--;
838                                 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
839                                 dev_kfree_skb_any (pe->skb);
840                                 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
841                                 kfree (pe);
842                         }
843                         if (atm_vcc)
844                                 atomic_inc(&atm_vcc->stats->rx_drop);
845                         break;
846                 case 0x1f: /*  Reassembly abort: no buffers. */
847                         /* Silently increment error counter. */
848                         if (atm_vcc)
849                                 atomic_inc(&atm_vcc->stats->rx_drop);
850                         break;
851                 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
852                         printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n", 
853                                 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
854                 }
855                 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
856         }
857 }
858 
859 
860 
861 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
862 
863 static int fs_open(struct atm_vcc *atm_vcc)
864 {
865         struct fs_dev *dev;
866         struct fs_vcc *vcc;
867         struct fs_transmit_config *tc;
868         struct atm_trafprm * txtp;
869         struct atm_trafprm * rxtp;
870         /*  struct fs_receive_config *rc;*/
871         /*  struct FS_QENTRY *qe; */
872         int error;
873         int bfp;
874         int to;
875         unsigned short tmc0;
876         short vpi = atm_vcc->vpi;
877         int vci = atm_vcc->vci;
878 
879         func_enter ();
880 
881         dev = FS_DEV(atm_vcc->dev);
882         fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n", 
883                     dev, atm_vcc);
884 
885         if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
886                 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
887 
888         if ((atm_vcc->qos.aal != ATM_AAL5) &&
889             (atm_vcc->qos.aal != ATM_AAL2))
890           return -EINVAL; /* XXX AAL0 */
891 
892         fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n", 
893                     atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);  
894 
895         /* XXX handle qos parameters (rate limiting) ? */
896 
897         vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
898         fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%Zd)\n", vcc, sizeof(struct fs_vcc));
899         if (!vcc) {
900                 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
901                 return -ENOMEM;
902         }
903   
904         atm_vcc->dev_data = vcc;
905         vcc->last_skb = NULL;
906 
907         init_waitqueue_head (&vcc->close_wait);
908 
909         txtp = &atm_vcc->qos.txtp;
910         rxtp = &atm_vcc->qos.rxtp;
911 
912         if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
913                 if (IS_FS50(dev)) {
914                         /* Increment the channel numer: take a free one next time.  */
915                         for (to=33;to;to--, dev->channo++) {
916                                 /* We only have 32 channels */
917                                 if (dev->channo >= 32)
918                                         dev->channo = 0;
919                                 /* If we need to do RX, AND the RX is inuse, try the next */
920                                 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
921                                         continue;
922                                 /* If we need to do TX, AND the TX is inuse, try the next */
923                                 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
924                                         continue;
925                                 /* Ok, both are free! (or not needed) */
926                                 break;
927                         }
928                         if (!to) {
929                                 printk ("No more free channels for FS50..\n");
930                                 return -EBUSY;
931                         }
932                         vcc->channo = dev->channo;
933                         dev->channo &= dev->channel_mask;
934       
935                 } else {
936                         vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
937                         if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
938                             ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
939                                 printk ("Channel is in use for FS155.\n");
940                                 return -EBUSY;
941                         }
942                 }
943                 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n", 
944                             vcc->channo, vcc->channo);
945         }
946 
947         if (DO_DIRECTION (txtp)) {
948                 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
949                 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%Zd)\n",
950                             tc, sizeof (struct fs_transmit_config));
951                 if (!tc) {
952                         fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
953                         return -ENOMEM;
954                 }
955 
956                 /* Allocate the "open" entry from the high priority txq. This makes
957                    it most likely that the chip will notice it. It also prevents us
958                    from having to wait for completion. On the other hand, we may
959                    need to wait for completion anyway, to see if it completed
960                    successfully. */
961 
962                 switch (atm_vcc->qos.aal) {
963                 case ATM_AAL2:
964                 case ATM_AAL0:
965                   tc->flags = 0
966                     | TC_FLAGS_TRANSPARENT_PAYLOAD
967                     | TC_FLAGS_PACKET
968                     | (1 << 28)
969                     | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
970                     | TC_FLAGS_CAL0;
971                   break;
972                 case ATM_AAL5:
973                   tc->flags = 0
974                         | TC_FLAGS_AAL5
975                         | TC_FLAGS_PACKET  /* ??? */
976                         | TC_FLAGS_TYPE_CBR
977                         | TC_FLAGS_CAL0;
978                   break;
979                 default:
980                         printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
981                         tc->flags = 0;
982                 }
983                 /* Docs are vague about this atm_hdr field. By the way, the FS
984                  * chip makes odd errors if lower bits are set.... -- REW */
985                 tc->atm_hdr =  (vpi << 20) | (vci << 4); 
986                 tmc0 = 0;
987                 {
988                         int pcr = atm_pcr_goal (txtp);
989 
990                         fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
991 
992                         /* XXX Hmm. officially we're only allowed to do this if rounding 
993                            is round_down -- REW */
994                         if (IS_FS50(dev)) {
995                                 if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
996                         } else {
997                                 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
998                         }
999                         if (!pcr) {
1000                                 /* no rate cap */
1001                                 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
1002                         } else {
1003                                 int r;
1004                                 if (pcr < 0) {
1005                                         r = ROUND_DOWN;
1006                                         pcr = -pcr;
1007                                 } else {
1008                                         r = ROUND_UP;
1009                                 }
1010                                 error = make_rate (pcr, r, &tmc0, NULL);
1011                                 if (error) {
1012                                         kfree(tc);
1013                                         return error;
1014                                 }
1015                         }
1016                         fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1017                 }
1018       
1019                 tc->TMC[0] = tmc0 | 0x4000;
1020                 tc->TMC[1] = 0; /* Unused */
1021                 tc->TMC[2] = 0; /* Unused */
1022                 tc->TMC[3] = 0; /* Unused */
1023     
1024                 tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1025                 tc->rtag[0] = 0; /* What should I do with routing tags??? 
1026                                     -- Not used -- AS -- Thanks -- REW*/
1027                 tc->rtag[1] = 0;
1028                 tc->rtag[2] = 0;
1029 
1030                 if (fs_debug & FS_DEBUG_OPEN) {
1031                         fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1032                         my_hd (tc, sizeof (*tc));
1033                 }
1034 
1035                 /* We now use the "submit_command" function to submit commands to
1036                    the firestream. There is a define up near the definition of
1037                    that routine that switches this routine between immediate write
1038                    to the immediate command registers and queuing the commands in
1039                    the HPTXQ for execution. This last technique might be more
1040                    efficient if we know we're going to submit a whole lot of
1041                    commands in one go, but this driver is not setup to be able to
1042                    use such a construct. So it probably doen't matter much right
1043                    now. -- REW */
1044     
1045                 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1046                 submit_command (dev, &dev->hp_txq, 
1047                                 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1048                                 virt_to_bus (tc), 0, 0);
1049 
1050                 submit_command (dev, &dev->hp_txq, 
1051                                 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1052                                 0, 0, 0);
1053                 set_bit (vcc->channo, dev->tx_inuse);
1054         }
1055 
1056         if (DO_DIRECTION (rxtp)) {
1057                 dev->atm_vccs[vcc->channo] = atm_vcc;
1058 
1059                 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1060                         if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1061                 if (bfp >= FS_NR_FREE_POOLS) {
1062                         fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n", 
1063                                     atm_vcc->qos.rxtp.max_sdu);
1064                         /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1065 
1066                         /* XXX clear tx inuse. Close TX part? */
1067                         dev->atm_vccs[vcc->channo] = NULL;
1068                         kfree (vcc);
1069                         return -EINVAL;
1070                 }
1071 
1072                 switch (atm_vcc->qos.aal) {
1073                 case ATM_AAL0:
1074                 case ATM_AAL2:
1075                         submit_command (dev, &dev->hp_txq,
1076                                         QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1077                                         RC_FLAGS_TRANSP |
1078                                         RC_FLAGS_BFPS_BFP * bfp |
1079                                         RC_FLAGS_RXBM_PSB, 0, 0);
1080                         break;
1081                 case ATM_AAL5:
1082                         submit_command (dev, &dev->hp_txq,
1083                                         QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1084                                         RC_FLAGS_AAL5 |
1085                                         RC_FLAGS_BFPS_BFP * bfp |
1086                                         RC_FLAGS_RXBM_PSB, 0, 0);
1087                         break;
1088                 };
1089                 if (IS_FS50 (dev)) {
1090                         submit_command (dev, &dev->hp_txq, 
1091                                         QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1092                                         0x80 + vcc->channo,
1093                                         (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1094                 }
1095                 submit_command (dev, &dev->hp_txq, 
1096                                 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1097                                 0, 0, 0);
1098         }
1099     
1100         /* Indicate we're done! */
1101         set_bit(ATM_VF_READY, &atm_vcc->flags);
1102 
1103         func_exit ();
1104         return 0;
1105 }
1106 
1107 
1108 static void fs_close(struct atm_vcc *atm_vcc)
1109 {
1110         struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1111         struct fs_vcc *vcc = FS_VCC (atm_vcc);
1112         struct atm_trafprm * txtp;
1113         struct atm_trafprm * rxtp;
1114 
1115         func_enter ();
1116 
1117         clear_bit(ATM_VF_READY, &atm_vcc->flags);
1118 
1119         fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1120         if (vcc->last_skb) {
1121                 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n", 
1122                             vcc->last_skb);
1123                 /* We're going to wait for the last packet to get sent on this VC. It would
1124                    be impolite not to send them don't you think? 
1125                    XXX
1126                    We don't know which packets didn't get sent. So if we get interrupted in 
1127                    this sleep_on, we'll lose any reference to these packets. Memory leak!
1128                    On the other hand, it's awfully convenient that we can abort a "close" that
1129                    is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1130                 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1131         }
1132 
1133         txtp = &atm_vcc->qos.txtp;
1134         rxtp = &atm_vcc->qos.rxtp;
1135   
1136 
1137         /* See App note XXX (Unpublished as of now) for the reason for the 
1138            removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1139 
1140         if (DO_DIRECTION (txtp)) {
1141                 submit_command (dev,  &dev->hp_txq,
1142                                 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1143                 clear_bit (vcc->channo, dev->tx_inuse);
1144         }
1145 
1146         if (DO_DIRECTION (rxtp)) {
1147                 submit_command (dev,  &dev->hp_txq,
1148                                 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1149                 dev->atm_vccs [vcc->channo] = NULL;
1150   
1151                 /* This means that this is configured as a receive channel */
1152                 if (IS_FS50 (dev)) {
1153                         /* Disable the receive filter. Is 0/0 indeed an invalid receive
1154                            channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1155                            (0xfff...) -- REW */
1156                         submit_command (dev, &dev->hp_txq, 
1157                                         QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1158                                         0x80 + vcc->channo, -1, 0 ); 
1159                 }
1160         }
1161 
1162         fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1163         kfree (vcc);
1164 
1165         func_exit ();
1166 }
1167 
1168 
1169 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1170 {
1171         struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1172         struct fs_vcc *vcc = FS_VCC (atm_vcc);
1173         struct FS_BPENTRY *td;
1174 
1175         func_enter ();
1176 
1177         fs_dprintk (FS_DEBUG_TXMEM, "I");
1178         fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n", 
1179                     atm_vcc, skb, vcc, dev);
1180 
1181         fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1182 
1183         ATM_SKB(skb)->vcc = atm_vcc;
1184 
1185         vcc->last_skb = skb;
1186 
1187         td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1188         fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%Zd)\n", td, sizeof (struct FS_BPENTRY));
1189         if (!td) {
1190                 /* Oops out of mem */
1191                 return -ENOMEM;
1192         }
1193 
1194         fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n", 
1195                     *(int *) skb->data);
1196 
1197         td->flags =  TD_EPI | TD_DATA | skb->len;
1198         td->next = 0;
1199         td->bsa  = virt_to_bus (skb->data);
1200         td->skb = skb;
1201         td->dev = dev;
1202         dev->ntxpckts++;
1203 
1204 #ifdef DEBUG_EXTRA
1205         da[qd] = td;
1206         dq[qd].flags = td->flags;
1207         dq[qd].next  = td->next;
1208         dq[qd].bsa   = td->bsa;
1209         dq[qd].skb   = td->skb;
1210         dq[qd].dev   = td->dev;
1211         qd++;
1212         if (qd >= 60) qd = 0;
1213 #endif
1214 
1215         submit_queue (dev, &dev->hp_txq, 
1216                       QE_TRANSMIT_DE | vcc->channo,
1217                       virt_to_bus (td), 0, 
1218                       virt_to_bus (td));
1219 
1220         fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n", 
1221                     read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1222                     read_fs (dev, Q_SA (dev->hp_txq.offset)),
1223                     read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1224                     read_fs (dev, Q_SA (dev->tx_relq.offset)));
1225 
1226         func_exit ();
1227         return 0;
1228 }
1229 
1230 
1231 /* Some function placeholders for functions we don't yet support. */
1232 
1233 #if 0
1234 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1235 {
1236         func_enter ();
1237         func_exit ();
1238         return -ENOIOCTLCMD;
1239 }
1240 
1241 
1242 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1243                          void __user *optval,int optlen)
1244 {
1245         func_enter ();
1246         func_exit ();
1247         return 0;
1248 }
1249 
1250 
1251 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1252                          void __user *optval,unsigned int optlen)
1253 {
1254         func_enter ();
1255         func_exit ();
1256         return 0;
1257 }
1258 
1259 
1260 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1261                        unsigned long addr)
1262 {
1263         func_enter ();
1264         func_exit ();
1265 }
1266 
1267 
1268 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1269 {
1270         func_enter ();
1271         func_exit ();
1272         return 0;
1273 }
1274 
1275 
1276 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1277 {
1278         func_enter ();
1279         func_exit ();
1280         return 0;
1281 };
1282 
1283 #endif
1284 
1285 
1286 static const struct atmdev_ops ops = {
1287         .open =         fs_open,
1288         .close =        fs_close,
1289         .send =         fs_send,
1290         .owner =        THIS_MODULE,
1291         /* ioctl:          fs_ioctl, */
1292         /* getsockopt:     fs_getsockopt, */
1293         /* setsockopt:     fs_setsockopt, */
1294         /* change_qos:     fs_change_qos, */
1295 
1296         /* For now implement these internally here... */  
1297         /* phy_put:        fs_phy_put, */
1298         /* phy_get:        fs_phy_get, */
1299 };
1300 
1301 
1302 static void undocumented_pci_fix(struct pci_dev *pdev)
1303 {
1304         u32 tint;
1305 
1306         /* The Windows driver says: */
1307         /* Switch off FireStream Retry Limit Threshold 
1308          */
1309 
1310         /* The register at 0x28 is documented as "reserved", no further
1311            comments. */
1312 
1313         pci_read_config_dword (pdev, 0x28, &tint);
1314         if (tint != 0x80) {
1315                 tint = 0x80;
1316                 pci_write_config_dword (pdev, 0x28, tint);
1317         }
1318 }
1319 
1320 
1321 
1322 /**************************************************************************
1323  *                              PHY routines                              *
1324  **************************************************************************/
1325 
1326 static void write_phy(struct fs_dev *dev, int regnum, int val)
1327 {
1328         submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1329                         regnum, val, 0);
1330 }
1331 
1332 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1333 {
1334         int i;
1335 
1336         func_enter ();
1337         while (reginit->reg != PHY_EOF) {
1338                 if (reginit->reg == PHY_CLEARALL) {
1339                         /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1340                         for (i=0;i<reginit->val;i++) {
1341                                 write_phy (dev, i, 0);
1342                         }
1343                 } else {
1344                         write_phy (dev, reginit->reg, reginit->val);
1345                 }
1346                 reginit++;
1347         }
1348         func_exit ();
1349         return 0;
1350 }
1351 
1352 static void reset_chip (struct fs_dev *dev)
1353 {
1354         int i;
1355 
1356         write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1357 
1358         /* Undocumented delay */
1359         udelay (128);
1360 
1361         /* The "internal registers are documented to all reset to zero, but 
1362            comments & code in the Windows driver indicates that the pools are
1363            NOT reset. */
1364         for (i=0;i < FS_NR_FREE_POOLS;i++) {
1365                 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1366                 write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1367                 write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1368                 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1369                 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1370         }
1371 
1372         /* The same goes for the match channel registers, although those are
1373            NOT documented that way in the Windows driver. -- REW */
1374         /* The Windows driver DOES write 0 to these registers somewhere in
1375            the init sequence. However, a small hardware-feature, will
1376            prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1377            allocated happens to have no disabled channels that have a lower
1378            number. -- REW */
1379 
1380         /* Clear the match channel registers. */
1381         if (IS_FS50 (dev)) {
1382                 for (i=0;i<FS50_NR_CHANNELS;i++) {
1383                         write_fs (dev, 0x200 + i * 4, -1);
1384                 }
1385         }
1386 }
1387 
1388 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1389 {
1390         void  *t;
1391 
1392         if (alignment <= 0x10) {
1393                 t = kmalloc (size, flags);
1394                 if ((unsigned long)t & (alignment-1)) {
1395                         printk ("Kmalloc doesn't align things correctly! %p\n", t);
1396                         kfree (t);
1397                         return aligned_kmalloc (size, flags, alignment * 4);
1398                 }
1399                 return t;
1400         }
1401         printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1402         return NULL;
1403 }
1404 
1405 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1406                   int nentries, int is_rq)
1407 {
1408         int sz = nentries * sizeof (struct FS_QENTRY);
1409         struct FS_QENTRY *p;
1410 
1411         func_enter ();
1412 
1413         fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n", 
1414                     queue, nentries);
1415 
1416         p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1417         fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1418 
1419         if (!p) return 0;
1420 
1421         write_fs (dev, Q_SA(queue), virt_to_bus(p));
1422         write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1423         write_fs (dev, Q_WP(queue), virt_to_bus(p));
1424         write_fs (dev, Q_RP(queue), virt_to_bus(p));
1425         if (is_rq) {
1426                 /* Configuration for the receive queue: 0: interrupt immediately,
1427                    no pre-warning to empty queues: We do our best to keep the
1428                    queue filled anyway. */
1429                 write_fs (dev, Q_CNF(queue), 0 ); 
1430         }
1431 
1432         txq->sa = p;
1433         txq->ea = p;
1434         txq->offset = queue; 
1435 
1436         func_exit ();
1437         return 1;
1438 }
1439 
1440 
1441 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1442                    int bufsize, int nr_buffers)
1443 {
1444         func_enter ();
1445 
1446         fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1447 
1448         write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1449         write_fs (dev, FP_SA(queue),  0);
1450         write_fs (dev, FP_EA(queue),  0);
1451         write_fs (dev, FP_CTU(queue), 0);
1452         write_fs (dev, FP_CNT(queue), 0);
1453 
1454         fp->offset = queue; 
1455         fp->bufsize = bufsize;
1456         fp->nr_buffers = nr_buffers;
1457 
1458         func_exit ();
1459         return 1;
1460 }
1461 
1462 
1463 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1464 {
1465 #if 0
1466         /* This seems to be unreliable.... */
1467         return read_fs (dev, FP_CNT (fp->offset));
1468 #else
1469         return fp->n;
1470 #endif
1471 }
1472 
1473 
1474 /* Check if this gets going again if a pool ever runs out.  -- Yes, it
1475    does. I've seen "receive abort: no buffers" and things started
1476    working again after that...  -- REW */
1477 
1478 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1479                         gfp_t gfp_flags)
1480 {
1481         struct FS_BPENTRY *qe, *ne;
1482         struct sk_buff *skb;
1483         int n = 0;
1484         u32 qe_tmp;
1485 
1486         fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n", 
1487                     fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n, 
1488                     fp->nr_buffers);
1489         while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1490 
1491                 skb = alloc_skb (fp->bufsize, gfp_flags);
1492                 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1493                 if (!skb) break;
1494                 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1495                 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%Zd)\n", ne, sizeof (struct FS_BPENTRY));
1496                 if (!ne) {
1497                         fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1498                         dev_kfree_skb_any (skb);
1499                         break;
1500                 }
1501 
1502                 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ", 
1503                             skb, ne, skb->data, skb->head);
1504                 n++;
1505                 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1506                 ne->next  = virt_to_bus (NULL);
1507                 ne->bsa   = virt_to_bus (skb->data);
1508                 ne->aal_bufsize = fp->bufsize;
1509                 ne->skb = skb;
1510                 ne->fp = fp;
1511 
1512                 /*
1513                  * FIXME: following code encodes and decodes
1514                  * machine pointers (could be 64-bit) into a
1515                  * 32-bit register.
1516                  */
1517 
1518                 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1519                 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1520                 if (qe_tmp) {
1521                         qe = bus_to_virt ((long) qe_tmp);
1522                         qe->next = virt_to_bus(ne);
1523                         qe->flags &= ~FP_FLAGS_EPI;
1524                 } else
1525                         write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1526 
1527                 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1528                 fp->n++;   /* XXX Atomic_inc? */
1529                 write_fs (dev, FP_CTU(fp->offset), 1);
1530         }
1531 
1532         fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1533 }
1534 
1535 static void free_queue(struct fs_dev *dev, struct queue *txq)
1536 {
1537         func_enter ();
1538 
1539         write_fs (dev, Q_SA(txq->offset), 0);
1540         write_fs (dev, Q_EA(txq->offset), 0);
1541         write_fs (dev, Q_RP(txq->offset), 0);
1542         write_fs (dev, Q_WP(txq->offset), 0);
1543         /* Configuration ? */
1544 
1545         fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1546         kfree (txq->sa);
1547 
1548         func_exit ();
1549 }
1550 
1551 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1552 {
1553         func_enter ();
1554 
1555         write_fs (dev, FP_CNF(fp->offset), 0);
1556         write_fs (dev, FP_SA (fp->offset), 0);
1557         write_fs (dev, FP_EA (fp->offset), 0);
1558         write_fs (dev, FP_CNT(fp->offset), 0);
1559         write_fs (dev, FP_CTU(fp->offset), 0);
1560 
1561         func_exit ();
1562 }
1563 
1564 
1565 
1566 static irqreturn_t fs_irq (int irq, void *dev_id) 
1567 {
1568         int i;
1569         u32 status;
1570         struct fs_dev *dev = dev_id;
1571 
1572         status = read_fs (dev, ISR);
1573         if (!status)
1574                 return IRQ_NONE;
1575 
1576         func_enter ();
1577 
1578 #ifdef IRQ_RATE_LIMIT
1579         /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual 
1580            interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1581         {
1582                 static int lastjif;
1583                 static int nintr=0;
1584     
1585                 if (lastjif == jiffies) {
1586                         if (++nintr > IRQ_RATE_LIMIT) {
1587                                 free_irq (dev->irq, dev_id);
1588                                 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n", 
1589                                         dev->irq);
1590                         }
1591                 } else {
1592                         lastjif = jiffies;
1593                         nintr = 0;
1594                 }
1595         }
1596 #endif
1597         fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n", 
1598                     read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1599                     read_fs (dev, Q_SA (dev->hp_txq.offset)),
1600                     read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1601                     read_fs (dev, Q_SA (dev->tx_relq.offset)));
1602 
1603         /* print the bits in the ISR register. */
1604         if (fs_debug & FS_DEBUG_IRQ) {
1605                 /* The FS_DEBUG things are unnecessary here. But this way it is
1606                    clear for grep that these are debug prints. */
1607                 fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1608                 for (i=0;i<27;i++) 
1609                         if (status & (1 << i)) 
1610                                 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1611                 fs_dprintk (FS_DEBUG_IRQ, "\n");
1612         }
1613   
1614         if (status & ISR_RBRQ0_W) {
1615                 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1616                 process_incoming (dev, &dev->rx_rq[0]);
1617                 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1618                 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1619                 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1620         }
1621 
1622         if (status & ISR_RBRQ1_W) {
1623                 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1624                 process_incoming (dev, &dev->rx_rq[1]);
1625                 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1626                 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1627         }
1628 
1629         if (status & ISR_RBRQ2_W) {
1630                 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1631                 process_incoming (dev, &dev->rx_rq[2]);
1632                 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1633                 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1634         }
1635 
1636         if (status & ISR_RBRQ3_W) {
1637                 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1638                 process_incoming (dev, &dev->rx_rq[3]);
1639                 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1640                 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1641         }
1642 
1643         if (status & ISR_CSQ_W) {
1644                 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1645                 process_return_queue (dev, &dev->st_q);
1646         }
1647 
1648         if (status & ISR_TBRQ_W) {
1649                 fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1650                 process_txdone_queue (dev, &dev->tx_relq);
1651         }
1652 
1653         func_exit ();
1654         return IRQ_HANDLED;
1655 }
1656 
1657 
1658 #ifdef FS_POLL_FREQ
1659 static void fs_poll (unsigned long data)
1660 {
1661         struct fs_dev *dev = (struct fs_dev *) data;
1662   
1663         fs_irq (0, dev);
1664         dev->timer.expires = jiffies + FS_POLL_FREQ;
1665         add_timer (&dev->timer);
1666 }
1667 #endif
1668 
1669 static int fs_init(struct fs_dev *dev)
1670 {
1671         struct pci_dev  *pci_dev;
1672         int isr, to;
1673         int i;
1674 
1675         func_enter ();
1676         pci_dev = dev->pci_dev;
1677 
1678         printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1679                 IS_FS50(dev)?50:155,
1680                 (unsigned long long)pci_resource_start(pci_dev, 0),
1681                 dev->pci_dev->irq);
1682 
1683         if (fs_debug & FS_DEBUG_INIT)
1684                 my_hd ((unsigned char *) dev, sizeof (*dev));
1685 
1686         undocumented_pci_fix (pci_dev);
1687 
1688         dev->hw_base = pci_resource_start(pci_dev, 0);
1689 
1690         dev->base = ioremap(dev->hw_base, 0x1000);
1691 
1692         reset_chip (dev);
1693   
1694         write_fs (dev, SARMODE0, 0 
1695                   | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1696                   | (1 * SARMODE0_INTMODE_READCLEAR)
1697                   | (1 * SARMODE0_CWRE)
1698                   | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1699                           SARMODE0_PRPWT_FS155_3)
1700                   | (1 * SARMODE0_CALSUP_1)
1701                   | (IS_FS50(dev) ? (0
1702                                    | SARMODE0_RXVCS_32
1703                                    | SARMODE0_ABRVCS_32 
1704                                    | SARMODE0_TXVCS_32):
1705                                   (0
1706                                    | SARMODE0_RXVCS_1k
1707                                    | SARMODE0_ABRVCS_1k 
1708                                    | SARMODE0_TXVCS_1k)));
1709 
1710         /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1711            1ms. */
1712         to = 100;
1713         while (--to) {
1714                 isr = read_fs (dev, ISR);
1715 
1716                 /* This bit is documented as "RESERVED" */
1717                 if (isr & ISR_INIT_ERR) {
1718                         printk (KERN_ERR "Error initializing the FS... \n");
1719                         goto unmap;
1720                 }
1721                 if (isr & ISR_INIT) {
1722                         fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1723                         break;
1724                 }
1725 
1726                 /* Try again after 10ms. */
1727                 msleep(10);
1728         }
1729 
1730         if (!to) {
1731                 printk (KERN_ERR "timeout initializing the FS... \n");
1732                 goto unmap;
1733         }
1734 
1735         /* XXX fix for fs155 */
1736         dev->channel_mask = 0x1f; 
1737         dev->channo = 0;
1738 
1739         /* AN3: 10 */
1740         write_fs (dev, SARMODE1, 0 
1741                   | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1742                   | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1743                   | (1 * SARMODE1_DCRM)
1744                   | (1 * SARMODE1_DCOAM)
1745                   | (0 * SARMODE1_OAMCRC)
1746                   | (0 * SARMODE1_DUMPE)
1747                   | (0 * SARMODE1_GPLEN) 
1748                   | (0 * SARMODE1_GNAM)
1749                   | (0 * SARMODE1_GVAS)
1750                   | (0 * SARMODE1_GPAS)
1751                   | (1 * SARMODE1_GPRI)
1752                   | (0 * SARMODE1_PMS)
1753                   | (0 * SARMODE1_GFCR)
1754                   | (1 * SARMODE1_HECM2)
1755                   | (1 * SARMODE1_HECM1)
1756                   | (1 * SARMODE1_HECM0)
1757                   | (1 << 12) /* That's what hang's driver does. Program to 0 */
1758                   | (0 * 0xff) /* XXX FS155 */);
1759 
1760 
1761         /* Cal prescale etc */
1762 
1763         /* AN3: 11 */
1764         write_fs (dev, TMCONF, 0x0000000f);
1765         write_fs (dev, CALPRESCALE, 0x01010101 * num);
1766         write_fs (dev, 0x80, 0x000F00E4);
1767 
1768         /* AN3: 12 */
1769         write_fs (dev, CELLOSCONF, 0
1770                   | (   0 * CELLOSCONF_CEN)
1771                   | (       CELLOSCONF_SC1)
1772                   | (0x80 * CELLOSCONF_COBS)
1773                   | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1774                   | (num  * CELLOSCONF_COST));/* after a hint from Hang. 
1775                                                * performance jumped 50->70... */
1776 
1777         /* Magic value by Hang */
1778         write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1779 
1780         if (IS_FS50 (dev)) {
1781                 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1782                 dev->atm_dev->ci_range.vpi_bits = 12;
1783                 dev->atm_dev->ci_range.vci_bits = 16;
1784                 dev->nchannels = FS50_NR_CHANNELS;
1785         } else {
1786                 write_fs (dev, RAS0, RAS0_DCD_XHLT 
1787                           | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1788                           | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1789                 /* We can chose the split arbitrarily. We might be able to 
1790                    support more. Whatever. This should do for now. */
1791                 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1792                 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1793     
1794                 /* Address bits we can't use should be compared to 0. */
1795                 write_fs (dev, RAC, 0);
1796 
1797                 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1798                  * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1799                  * other bits, then compare with 0, which is exactly what we
1800                  * want. */
1801                 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1802                 dev->nchannels = FS155_NR_CHANNELS;
1803         }
1804         dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1805                                  GFP_KERNEL);
1806         fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%Zd)\n",
1807                     dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1808 
1809         if (!dev->atm_vccs) {
1810                 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1811                 /* XXX Clean up..... */
1812                 goto unmap;
1813         }
1814 
1815         dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1816         fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n", 
1817                     dev->atm_vccs, dev->nchannels / 8);
1818 
1819         if (!dev->tx_inuse) {
1820                 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1821                 /* XXX Clean up..... */
1822                 goto unmap;
1823         }
1824         /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1825         /* -- RAS2 : FS50 only: Default is OK. */
1826 
1827         /* DMAMODE, default should be OK. -- REW */
1828         write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1829 
1830         init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1831         init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1832         init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1833         init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1834 
1835         for (i=0;i < FS_NR_FREE_POOLS;i++) {
1836                 init_fp (dev, &dev->rx_fp[i], RXB_FP(i), 
1837                          rx_buf_sizes[i], rx_pool_sizes[i]);
1838                 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1839         }
1840 
1841 
1842         for (i=0;i < FS_NR_RX_QUEUES;i++)
1843                 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1844 
1845         dev->irq = pci_dev->irq;
1846         if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1847                 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1848                 /* XXX undo all previous stuff... */
1849                 goto unmap;
1850         }
1851         fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1852   
1853         /* We want to be notified of most things. Just the statistics count
1854            overflows are not interesting */
1855         write_fs (dev, IMR, 0
1856                   | ISR_RBRQ0_W 
1857                   | ISR_RBRQ1_W 
1858                   | ISR_RBRQ2_W 
1859                   | ISR_RBRQ3_W 
1860                   | ISR_TBRQ_W
1861                   | ISR_CSQ_W);
1862 
1863         write_fs (dev, SARMODE0, 0 
1864                   | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1865                   | (1 * SARMODE0_GINT)
1866                   | (1 * SARMODE0_INTMODE_READCLEAR)
1867                   | (0 * SARMODE0_CWRE)
1868                   | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5: 
1869                                   SARMODE0_PRPWT_FS155_3)
1870                   | (1 * SARMODE0_CALSUP_1)
1871                   | (IS_FS50 (dev)?(0
1872                                     | SARMODE0_RXVCS_32
1873                                     | SARMODE0_ABRVCS_32 
1874                                     | SARMODE0_TXVCS_32):
1875                                    (0
1876                                     | SARMODE0_RXVCS_1k
1877                                     | SARMODE0_ABRVCS_1k 
1878                                     | SARMODE0_TXVCS_1k))
1879                   | (1 * SARMODE0_RUN));
1880 
1881         init_phy (dev, PHY_NTC_INIT);
1882 
1883         if (loopback == 2) {
1884                 write_phy (dev, 0x39, 0x000e);
1885         }
1886 
1887 #ifdef FS_POLL_FREQ
1888         init_timer (&dev->timer);
1889         dev->timer.data = (unsigned long) dev;
1890         dev->timer.function = fs_poll;
1891         dev->timer.expires = jiffies + FS_POLL_FREQ;
1892         add_timer (&dev->timer);
1893 #endif
1894 
1895         dev->atm_dev->dev_data = dev;
1896   
1897         func_exit ();
1898         return 0;
1899 unmap:
1900         iounmap(dev->base);
1901         return 1;
1902 }
1903 
1904 static int firestream_init_one(struct pci_dev *pci_dev,
1905                                const struct pci_device_id *ent)
1906 {
1907         struct atm_dev *atm_dev;
1908         struct fs_dev *fs_dev;
1909         
1910         if (pci_enable_device(pci_dev)) 
1911                 goto err_out;
1912 
1913         fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1914         fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%Zd)\n",
1915                     fs_dev, sizeof (struct fs_dev));
1916         if (!fs_dev)
1917                 goto err_out;
1918         atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1919         if (!atm_dev)
1920                 goto err_out_free_fs_dev;
1921   
1922         fs_dev->pci_dev = pci_dev;
1923         fs_dev->atm_dev = atm_dev;
1924         fs_dev->flags = ent->driver_data;
1925 
1926         if (fs_init(fs_dev))
1927                 goto err_out_free_atm_dev;
1928 
1929         fs_dev->next = fs_boards;
1930         fs_boards = fs_dev;
1931         return 0;
1932 
1933  err_out_free_atm_dev:
1934         atm_dev_deregister(atm_dev);
1935  err_out_free_fs_dev:
1936         kfree(fs_dev);
1937  err_out:
1938         return -ENODEV;
1939 }
1940 
1941 static void firestream_remove_one(struct pci_dev *pdev)
1942 {
1943         int i;
1944         struct fs_dev *dev, *nxtdev;
1945         struct fs_vcc *vcc;
1946         struct FS_BPENTRY *fp, *nxt;
1947   
1948         func_enter ();
1949 
1950 #if 0
1951         printk ("hptxq:\n");
1952         for (i=0;i<60;i++) {
1953                 printk ("%d: %08x %08x %08x %08x \n", 
1954                         i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1955                 qp++;
1956                 if (qp >= 60) qp = 0;
1957         }
1958 
1959         printk ("descriptors:\n");
1960         for (i=0;i<60;i++) {
1961                 printk ("%d: %p: %08x %08x %p %p\n", 
1962                         i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1963                 qd++;
1964                 if (qd >= 60) qd = 0;
1965         }
1966 #endif
1967 
1968         for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1969                 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1970 
1971                 /* XXX Hit all the tx channels too! */
1972 
1973                 for (i=0;i < dev->nchannels;i++) {
1974                         if (dev->atm_vccs[i]) {
1975                                 vcc = FS_VCC (dev->atm_vccs[i]);
1976                                 submit_command (dev,  &dev->hp_txq,
1977                                                 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1978                                 submit_command (dev,  &dev->hp_txq,
1979                                                 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1980 
1981                         }
1982                 }
1983 
1984                 /* XXX Wait a while for the chip to release all buffers. */
1985 
1986                 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1987                         for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1988                              !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1989                                 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1990                                 dev_kfree_skb_any (fp->skb);
1991                                 nxt = bus_to_virt (fp->next);
1992                                 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1993                                 kfree (fp);
1994                         }
1995                         fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1996                         dev_kfree_skb_any (fp->skb);
1997                         fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1998                         kfree (fp);
1999                 }
2000 
2001                 /* Hang the chip in "reset", prevent it clobbering memory that is
2002                    no longer ours. */
2003                 reset_chip (dev);
2004 
2005                 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2006                 free_irq (dev->irq, dev);
2007                 del_timer_sync (&dev->timer);
2008 
2009                 atm_dev_deregister(dev->atm_dev);
2010                 free_queue (dev, &dev->hp_txq);
2011                 free_queue (dev, &dev->lp_txq);
2012                 free_queue (dev, &dev->tx_relq);
2013                 free_queue (dev, &dev->st_q);
2014 
2015                 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2016                 kfree (dev->atm_vccs);
2017 
2018                 for (i=0;i< FS_NR_FREE_POOLS;i++)
2019                         free_freepool (dev, &dev->rx_fp[i]);
2020     
2021                 for (i=0;i < FS_NR_RX_QUEUES;i++)
2022                         free_queue (dev, &dev->rx_rq[i]);
2023 
2024                 iounmap(dev->base);
2025                 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2026                 nxtdev = dev->next;
2027                 kfree (dev);
2028         }
2029 
2030         func_exit ();
2031 }
2032 
2033 static struct pci_device_id firestream_pci_tbl[] = {
2034         { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2035         { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2036         { 0, }
2037 };
2038 
2039 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2040 
2041 static struct pci_driver firestream_driver = {
2042         .name           = "firestream",
2043         .id_table       = firestream_pci_tbl,
2044         .probe          = firestream_init_one,
2045         .remove         = firestream_remove_one,
2046 };
2047 
2048 static int __init firestream_init_module (void)
2049 {
2050         int error;
2051 
2052         func_enter ();
2053         error = pci_register_driver(&firestream_driver);
2054         func_exit ();
2055         return error;
2056 }
2057 
2058 static void __exit firestream_cleanup_module(void)
2059 {
2060         pci_unregister_driver(&firestream_driver);
2061 }
2062 
2063 module_init(firestream_init_module);
2064 module_exit(firestream_cleanup_module);
2065 
2066 MODULE_LICENSE("GPL");
2067 
2068 
2069 
2070 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us